• Title/Summary/Keyword: p-Akt

Search Result 445, Processing Time 0.03 seconds

Dendrobium moniliforme Stem Extract Inhibits Lipoteichoic Acid-Induced Inflammatory Responses by Upregulation of Heme Oxygenase-1

  • Lee, Young Ji;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1310-1317
    • /
    • 2018
  • The stems of Dendrobium moniliforme have been used in traditional herbal medicine for the treatment of fever and lack of body fluid in Korea. In this study, we investigated anti-inflammatory effects of the aqueous extract of D. moniliforme stems (DM) in response to lipoteichoic acid (LTA), a major constituent of the cell wall of Gram-positive bacteria. DM inhibited LTA-induced expression of a pro-inflammatory mediator inducible nitric oxide synthase (iNOS) in the murine macrophages. And DM induced expression of heme oxygenase-1 (HO-1) at the transcriptional level. Conversely, the knockdown of HO-1 expression by siRNA markedly reversed the inhibitory effects of DM on LTA-induced iNOS expression. We also demonstrated that nuclear translocation of Nrf2 was increased following treatment with DM. In addition, DM-mediated Nrf2 activation and HO-1 expression were suppressed by PI3K/Akt and p38 inhibitors; treatment with DM also resulted in phosphorylation of Akt and p38. These results suggest that DM inhibits the expression of iNOS in LTA-stimulated macrophages, and that these effects are mediated by the upregulation of HO-1 expression via PI3K/Akt/p38-Nrf2 signaling.

Thymoquinone Suppresses Migration of Human Renal Carcinoma Caki-1 Cells through Inhibition of the PGE2-Mediated Activation of the EP2 Receptor Pathway

  • Park, Geumi;Song, Na-Young;Kim, Do-Hee;Lee, Su-Jun;Chun, Kyung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.64-72
    • /
    • 2021
  • Renal cell carcinoma (RCC) is likely to metastasize to other organs, and is often resistant to conventional chemotherapies. Thymoquinone (TQ), a phytochemical derived from the seeds of Nigella sativa, has been shown to inhibit migration and metastasis in various cancers. In this study, we assessed the effect of TQ on the migratory activity of human RCC Caki-1 cells. We found that treatment with TQ reduced the proteolytic activity of matrix metalloproteinase-9 (MMP-9) in Caki-1 cells. TQ significantly repressed prostaglandin E2 (PGE2) production, its EP2 receptor expression as well as the activation of Akt and p38, the wellknown upstream signal proteins of MMP-9. In addition, treatment with butaprost, a PGE2 agonist, also induced MMP-9 activity and migration/invasion in Caki-1 cells. Moreover, pharmacological inhibitors of PI3K/Akt and p38 remarkably attenuated butaprost-induced Caki-1 cell migration and invasion, implying that activation of PI3K/Akt and p38 is a bridge between the PGE2-EP2 axis and MMP-9-dependent migration and invasion. Taken together, these data suggest that TQ is a promising anti-metastatic drug to treat advanced and metastatic RCC.

S100A8 and S100A9 Secreted by Allergens in Monocytes Inhibit Spontaneous Apoptosis of Normal and Asthmatic Neutrophils via the Lyn/Akt/ERK Pathway (단구에서 분비되는 S100A8과 S100A9의 Lyn/Akt/ERK 경로를 통한 정상인과 천식질환 호중구의 세포고사 억제 효과)

  • Kim, In Sik;Lee, Ji-Sook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.128-134
    • /
    • 2017
  • Der p 1 and Der p 2 are essential allergens of house dust mite associated with the development of asthma. In the present study, we examined whether Der p 1 and Der p 2 induce a release of S100A8 and S100A9 in monocytes, which are involved in the regulatory mechanism of neutrophil apoptosis. We found that Der p 1 and Der p 2 significantly increased the secretion of S100A8 and S100A9 in normal monocytes. Moreover, S100A8 and S100A9 strongly suppressed the spontaneous apoptosis of normal and asthmatic neutrophils. The inhibitory effect of S100A9 was stronger than that of S100A8, and asthmatic neutrophils showed a higher inhibitory effect than normal neutrophils. S100A8 and S100A9 induced activation of Lyn, Akt, and ERK in a time-dependent manner. These findings elucidate the roles of Der p 1 and Der p 2 in the interaction between monocytes and neutrophils, as well as contributing to our knowledge of the pathogenesis of allergic diseases.

Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume (매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과)

  • Kim, Hwi-gon;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 2021
  • This study examined the growth inhibitory effect of the methanol fraction of maesil (Prunus mume) extract (MMF) on LNCaP, PC-3, and RC-58T human prostate cancer cell lines. Among these cell lines, LNCaP was the most sensitive to the inhibitory effects of MMF. Observation of the morphology and apoptotic body formation in the LNCaP cells revealed morphological changes, nuclear damage, and condensation in response to MMF treatment. The suppressive effect of MMF was related to the intrinsic apoptosis pathway, as indicated by increased expression of the pro-apoptotic proteins Bax, capase-3, capase-9, and PARP and decreased expression of the anti-apoptotic protein Bcl-2. Combined treatment with MMF and the AIF inhibitor N-phenylmalemide (N-PM) indicated that MMF treatment alone had a significant growth suppression effect. The involvement of the extrinsic apoptosis pathway was also confirmed by increased expression of AIF and Endo G. The growth suppression effect of MMF was also significant when compared to the effects of a combination of the PI3K inhibitor LY294002 and MMF. The reduced expression of PI3K, p-Akt, and p-mTOR confirmed the involvement of the PI3K/Akt/ mTOR signaling pathway in regulating the anti-proliferative properties of MMF. In conclusion, the growth suppression effect of MMF in the LNCaP human prostate cancer cell line shows the possibility of using this natural product in functional foods.

Anti-obese and Blood Flow Improvement Activities of Ginseng Berry on the 45%Kcal High Fat Diet Supplied Mouse

  • Lee, Sol;Lee, Hae-Jeung;Chun, Yoon-Seok;Seol, Du-jin;Kim, Jong-Kyu;Ku, Sae-Kwang;Lee, Young-Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.107-127
    • /
    • 2018
  • Objectives : The present study investigated the anti-obese and blood flow improvement activities of aqueous extracts of ginseng berry (GBe) on the mild diabetic obese mice as compared with metformin. Methods : After end of 56 days of continuous oral administrations of GBe 150, 100 and 50 mg/kg, or metformin 250 mg/kg, anti-obese and blood flow improvement effects - the changes of body weights, body and abdominal fat density by in live dual-energy x-ray absorptionmetry (DEXA), tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) levels, aorta and serum cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and endothelin (ET)-1 levels, aorta phosphorylated PI3K (pPI3K), phosphorylated Akt (pAkt) and phosphorylated p38 MAPK (pp38 MAPK) levels were systemically analyzed. In addition, aorta vascular dilation and constriction related gene mRNA expressions - PI3K, Akt, eNOS, p38 MAPK and ET-1 were also analyzed by realtime RT-PCR. Results : The obesity and related blood flow impairment, induced by 84 days of continuous HFD supply, were significantly inhibited by 56 days of continuous oral treatment of GBe 150, 100 and 50mg/kg, dose-dependently, and they also dramatically normalized the changes of the aorta vascular dilation and constriction related gene mRNA expressions, also dose-dependently. Especially, GBe 150 mg/kg constantly showed favorable inhibitory activities against type II diabetes related obesity and vascular disorders through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities, as comparable to those of metformin 250 mg/kg in HFD mice. Conclusion : By assessing the key parameters for anti-obese and blood flow improvement activities on the HFD-induced mild diabetic obese mice, the present work demonstrated that GBe 150, 100 and 50 mg/kg showed favorable anti-obese and blood flow improvement effects in HFD-induced type II diabetic mice, through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities.

The Mechanism of Whole Plant Extract of Viola verecunda on the Proliferation of Dermal Papilla Cells (콩제비꽃 전초 추출물의 모유두세포 증식 기전)

  • Kang, Jung-Il;Seo, Min Jeong;Choi, Youn Kyung;Shin, Su Young;Hwang, Yong;Goh, Jae duk;Yoo, Eun-Sook;Kim, Sang-Cheol;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Proliferation and maintain of dermal papilla during progression of hair-cycle are crucial to the duration of anagen and regulated by diverse signaling pathway such as PI3K/Akt/Wnt/β-catenin pathway. In this study, we investigated the effects and mechanisms of Viola verecunda on dermal papilla cells. Treatment of dermal papilla cells with whole plant extract of V. verecunda resulted in cell proliferation, which was accompanied by up-regulation of cyclin D1, phospho (ser780)-pRB and cdc2 p34, and down-regulation of p27kip1. V. verecunda extract also promoted the levels of phospho (ser473)-Akt and phospho (ser780)-pRB in a time-dependent manner. Inhibition of PI3K/Akt by Wortmannin suppressed progression of cell-cycle, thereby attenuated the increases in proliferation of dermal papilla cells by V. verecunda extract. We further investigated Wnt/β-catenin pathway with respect to the effects of V. verecunda extract on the proliferation of dermal papilla cells. Treatment with V. verecunda extract results in up-regulation of Wnt/β-catenin proteins such as phospho (ser9)-GSKβ, phospho (ser552)-β-catenin and phospho (ser675)-β-catenin. In addition, Wortmannin abrogated V. verecunda extract mediated up-regulation of cdc2 p34 and down-regulation of p27kip1. These finding reveal that the proliferative effect of V. verecunda mediated by alteration of cell-cycle via activating PI3K/Akt/Wnt pathway in dermal papilla cells.

Inorganic sulfur reduces cell proliferation by inhibiting of $ErbB_2$ and $ErbB_3$ protein and mRNA expression in MDA-MB-231 human breast cancer cells

  • Ha, Ae Wha;Hong, Kyung Hee;Kim, Hee Sun;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Dietary inorganic sulfur is the minor component in our diet, but some studies suggested that inorganic sulfur is maybe effective to treat cancer related illness. Therefore, this study aims to examine the effects of inorganic sulfur on cell proliferation and gene expression in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured the absence or presence of various concentrations (12.5, 25, or 50 ${\mu}mol/L$) of inorganic sulfur. Inorganic sulfur significantly decreased proliferation after 72 h of incubation (P < 0.05). The protein expression of $ErbB_2$ and its active form, $pErbB_2$, were significantly reduced at inorganic sulfur concentrations of 50 ${\mu}mol/L$ and greater than 25 ${\mu}mol/L$, respectively (P < 0.05). The mRNA expression of $ErbB_2$ was significantly reduced at an inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05). The protein expression of $ErbB_3$ and its active form, $pErbB_3$, and the mRNA expression of $pErbB_3$ were significantly reduced at inorganic sulfur concentrations greater than 25 ${\mu}mol/L$ (P < 0.05). The protein and mRNA expression of Akt were significantly reduced at an inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05), but pAkt was not affected by inorganic sulfur treatment. The protein and mRNA expression of Bax were significantly increased with the addition of inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05). In conclusion, cell proliferation was suppressed by inorganic sulfur treatment through the ErbB-Akt pathway in MDA-MB-231 cells.

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun;Park, Sang-Jung;Cho, Sang-Nae;Lee, Hye-Young;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.583-588
    • /
    • 2012
  • Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

Simultaneous Detection of Seven Phosphoproteins in a Single Lysate Sample during Oocyte Maturation Process (난자성숙 과정의 단일 시료에서 일곱 가지 인산화 단백질의 동시 분석 방법)

  • Yoon, Se-Jin;Kim, Yun-Sun;Kim, Kyeoung-Hwa;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2009
  • Objective: Phosphorylation and dephosphorylation of proteins are important in regulating cellular signaling pathways. Bead-based multiplex phosphorylation assay was conducted to detect the phosphorylation of seven proteins to maximize the information obtained from a single lysate of stage-specific mouse oocytes at a time. Methods: Cumulus-oocyte complexes (COCs) were cultured for 2 h, 8 h, and 16 h, respectively to address phosphorylation status of seven target proteins during oocyte maturation process. We analyzed the changes in phosphorylation at germinal vesicle (GV, 0 h), germinal vesicle breakdown (GVBD, 2 h), metaphase I (MI, 8 h), and metaphase II (MII, 16 h in vitro or in vivo) mouse oocytes by using Bio-Plex phosphoprotein assay system. We chose seven target proteins, namely, three mitogen-activated protein kinases (MAPKs), ERK1/2, JNK, and p38 MAPK, and other 4 well known signaling molecules, Akt, GSK-$3{\alpha}/{\beta}$, $I{\kappa}B{\alpha}$, and STAT3 to measure their phosphorylation status. Western blot analysis and kinase inhibitor treatment for ERK1/2, JNK, and Akt during in vitro maturation of oocytes were conducted for the confirmation. Results: Phosphorylation of ERK1/2, JNK, p38 MAPK and STAT3 was increased over 3 folds up to 20 folds, while phosphorylation of the other three signal molecules, Akt, GSK-$3{\alpha}/{\beta}$, and $I{\kapa}B{\alpha}$ was less than 3 folds. All of these results except for Akt were statistically significant (p<0.05). Conclusion: This is the first report on the new and valuable method measuring many phosphoproteins simultaneously in one minute sample such as oocyte lysates. All of the three MAPKs, ERK1/2, JNK, and p38 MAPK are involved in the process of mouse oocyte maturation. In addition, STAT3 might be important regulator of oocyte maturation, while Akt phosphorylation at Serine 473 may not be involved in the regulation of oocyte maturation.

The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells (A549 폐암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 apoptosis 유도 효과)

  • Kim, Bo-Min;Kim, Guen-Tae;Kim, Eun-Ji;Lim, Eun-Gyeong;Kim, Sang-Yong;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.887-894
    • /
    • 2016
  • The extract from Artemisia annuain L.(AAE) is known as a medicinal herb that is effective against cancer. Apoptosis is the process of programmed cell death, and mitochondria are known to play a central role in cell death control. In this study, we evaluated the p53-independent apoptosis of extract of AAE through downregulation of Bcl-2 and the mitochondrial pathway in A549 (lung cancer cells). AAE may exert cancer cell apoptosis through regulating p-Akt, Cox-2, p53 and mitochondria-mediated apoptotic proteins. p-Akt/cox-2 is known to play an important role in cell proliferation and cell survival. The Bcl-2 pro-apoptotic proteins (such as Bax, Bak and Bim) mediate the permeabilization of the mitochondrial outer membrane. Treatment of AAE reduces p-Akt, p-Mdm2, cox-2 and anti-apoptotic proteins (such as Bcl-2), while tumor suppressor p53 and pro-apoptotic proteins. Activation of Bax/Bak releases cytochrome c from mitochondria to the cytosol to activate a caspase. Caspase-3 is the major effector caspase associated with apoptotic pathways. Caspase-3 generally exists in cytoplasm in the form of a pro-enzyme. In the initiation stage of apoptosis, caspase-3 is activated by proteolytic cleavage and activated caspase-3 cleaves poly (ADP-ribose) polymerase (PARP). We treated Pifithrin-α (p53 inhibitor) and Celecoxib (Cox-2 inhibitor) to learn the relationship between the signal transduction of proteins associated with apoptosis. These results suggest that AAE induces apoptosis through a p53-independent pathway in A549.