DOI QR코드

DOI QR Code

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun (Department of Biomedical Laboratory Science, Daegu Health College) ;
  • Park, Sang-Jung (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University) ;
  • Cho, Sang-Nae (Department of Microbiology, Yonsei University College of Medicine) ;
  • Lee, Hye-Young (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University) ;
  • Kim, Yoon-Suk (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University)
  • Received : 2012.06.05
  • Accepted : 2012.07.11
  • Published : 2012.10.31

Abstract

Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

Keywords

References

  1. World Health Organization. WHO report 2007: Global tuberculosis control; surveillance, planning, financing. p. 277, Geneva: WHO, 2007.
  2. Law, K., Weiden, M., Harkin, T., Tchou-Wong, K., Chi, C. and Rom, W. N. (1996) Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am. J. Respir. Crit. Care. Med. 153, 799-804. https://doi.org/10.1164/ajrccm.153.2.8564135
  3. Cooper, A. M. and Khader, S. A. (2008) The role of cytokines in the initiation, expansion, and control of cellular immuniy to tuberculosis. Immunol. Rev. 226, 191-204. https://doi.org/10.1111/j.1600-065X.2008.00702.x
  4. Fenton, M. J. (1998) Macrophages and tuberculosis. Curr. Opin. Hematol. 5, 72-78. https://doi.org/10.1097/00062752-199801000-00012
  5. Ferrara, G., Bleck, B., Richeldi, L., Reibman, J., Fabbri, L. M., Rom, W. N. and Condos, R. (2008) Mycobacterium tuberculosis induces CCL18 expression in human macrophages. Scand. J. Immunol. 68, 668-674.
  6. Peters, W. and Ernst, J. D. (2003) Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect. 5, 151-158. https://doi.org/10.1016/S1286-4579(02)00082-5
  7. Jin, H. T., Jeong, Y. H., Park, H. J. and Ha, S. J. (2011) Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 44, 217-231. https://doi.org/10.5483/BMBRep.2011.44.4.217
  8. Majumder, N., Bhattacharjee, S., Bhattacharyya (Majumdar), S., Dey, R., Guha, P., Pal, N. K. and Majumdar, S. (2008) Restoration of impaired free radical generation and proinflammatory cytokines by MCP-1 in mycobacterial pathogenesis. Scand. J. Immunol. 67, 329-339. https://doi.org/10.1111/j.1365-3083.2008.02070.x
  9. Lee, J. S., Song, C. H., Lim, J. H., Lee, K. S., Kim, H. J., Park, J. K., Paik, T. H., Jung, S. S. and Jo, E. K. (2003) Monocyte chemotactic protein-1 production in patients with active pulmonary tuberculosis and tuberculous pleurisy. Inflamm. Res. 52, 297-304. https://doi.org/10.1007/s00011-003-1176-6
  10. Algood, H. M., Chan, J. and Flynn, J. L. (2003) Chemokines and tuberculosis. Cytokine Growth Factor Rev. 14, 467-477. https://doi.org/10.1016/S1359-6101(03)00054-6
  11. Saukkonen, J. J., Bazydlo, B., Thomas, M., Strieter, R. M., Keane, J. and Kornfeld, H. (2002) Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infect. Immun. 70, 1684-1693. https://doi.org/10.1128/IAI.70.4.1684-1693.2002
  12. Mendez-Samperio, P., Trejo, A. and Perez, A. (2008) Mycobacterium bovis Bacillus Calmette-Guerin induces CCL5 secretion via the Toll-like receptor 2-NF-kappaB and -Jun N-terminal kinase signaling pathways. Clin. Vaccine Immunol. 15, 277-283. https://doi.org/10.1128/CVI.00368-07
  13. Davis, J. M. and Ramakrishnan, L. (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37-49. https://doi.org/10.1016/j.cell.2008.11.014
  14. Stegelmann, F., Bastian, M., Swoboda, K., Bhat, R., Kiessler, V., Krensky, A. M., Roellinghoff, M., Modlin, R. L. and Stenger, S. (2005) Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 175, 7474-7483. https://doi.org/10.4049/jimmunol.175.11.7474
  15. Moser, B., Wolf, A. and Loetscher, P. (2004) Chemokine; multiple levels of leukocyte migration control. Trends Immunol. 25, 75-84. https://doi.org/10.1016/j.it.2003.12.005
  16. Riedel, D. D. and Kaufmann, S. H. (1997) Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan. Infect. Immun. 65, 4620-4623.
  17. Karashima, K., Mujaida, N., Fujimura, M., Yasui, M., Nakazumi, Y., Matsuda, T. and Matsushima, K. (1997) Elevated chemokine levels in bronchoalveolar lavage fluid of tuberculosis patients. Am. J. Respir. Crit. Care Med. 155, 1474-1477. https://doi.org/10.1164/ajrccm.155.4.9105097
  18. Sadek, M. I., Sada, E., Toossi, Z., Schwander, S. K. and Rich, E. A. (1998) Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am. J. Respir. Cell Mol. Biol. 19, 513-521. https://doi.org/10.1165/ajrcmb.19.3.2815
  19. Zhang, Y. and Dong, C. (2007) Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol. Life Sci. 64, 2771-2789. https://doi.org/10.1007/s00018-007-7012-3
  20. Mendez-Samperio, P., Trejo, A. and Miranda, E. (2005) Mycobacterium bovis BCG induces CXC chemokine ligand 8 secretion via the MEK-dependent signal pathway in human epitheial cells. Cell Immunol. 234, 9-15. https://doi.org/10.1016/j.cellimm.2005.04.002
  21. Roach, S. K. and Schorey, J. S. (2002) Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect. Immun. 70, 3040-3052. https://doi.org/10.1128/IAI.70.6.3040-3052.2002
  22. Mendez-Samperio, P., Trejo, A. and Perez, A. (2008) Mycobacterium bovis Bacillus Calmette-Guerin (BCG) stimulates IL-10 production via the PI3K/Akt and p38 MAPK pathways in human lung epithelial cells. Cell Immunol. 251, 37-42. https://doi.org/10.1016/j.cellimm.2008.03.002
  23. A, S. K., Bansal, K., Holla, S., Verma-Kumar, S., Sharma, P. and Balaji, K. N. (2012) ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Mol. Immunol. 49, 655-663. https://doi.org/10.1016/j.molimm.2011.11.011
  24. Lee, S. H., Kim, D. W., Back, S. S., Hwang, H. S., Park, E. Y., Kang, T. C., Kwon, O. S., Park, J. H., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2011) Transduced Tat-Annexin protein suppresses inflammationassociated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. BMB Rep. 44, 484-489. https://doi.org/10.5483/BMBRep.2011.44.7.484
  25. Obata, T., Brown, G. E. and Yaffe, M. B. (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit. Care Med. 28, 67-77 https://doi.org/10.1097/00003246-200001000-00011
  26. Zhang, W. and Liu, H. T. (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18. https://doi.org/10.1038/sj.cr.7290105
  27. Surewicz, K., Aung, H., Kanost, R. A., Jones, L., Hejal, R. and Toossi, Z. (2004) The differential interaction of p38 MAP kinase and tumor necrosis factor-alpha in human alveolar macrophages and monocytes induced by Mycobacterium tuberculosis. Cell Immunol. 228, 34-41. https://doi.org/10.1016/j.cellimm.2004.03.007
  28. Song, C. H., Lee, J. S., Lee, S. H., Lim, K., Kim, H. J., Park, J. K., Paik, T. H. and Jo, E. K. (2003) Role of mitogen-activated protein kinase pathway in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23, 194-201. https://doi.org/10.1023/A:1023309928879
  29. Lee, H. M., Shim, D. M., Kim, K. K., Lee, J. S., Paik, T. H. and Jo, E. K. (2009) Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of Mycobacterium tuberculosis. J. Clin. Immunol. 29, 45-56.
  30. Youn, B. S., Zhang, S. M., Lee, E. K., Park, D. H., Broxmeyer, H. E., Murphy, P. M., Locati, M., Pease, J. E., Kim, K. K., Antol, K. and Kwon, B. S. (1997) Molecular cloning of leukotactin-1: a novel human beta-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. J. Immunol. 159, 5201-5205.
  31. Cho, J. E., Kim, Y. S., Park, S., Cho, S. N. and Lee, H. (2010) Mycobacterium tuberculosis-induced expression of Leukotactin-1 is mediated by the PI3-K/PDK1/Akt signaling pathway. Mol. Cells 29, 35-39. https://doi.org/10.1007/s10059-010-0003-5
  32. Jeong, J. H., Ryu, D. S., Suk, D. H. and Lee, D. S. (2011) Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells. BMB Rep. 44, 399-404. https://doi.org/10.5483/BMBRep.2011.44.6.399

Cited by

  1. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system vol.16, pp.3, 2015, https://doi.org/10.1038/ni.3096
  2. 2-Cyclopropylimino-3-Methyl-1,3-Thiazoline Hydrochloride Inhibits Microglial Activation by Suppression of Nuclear Factor-Kappa B and Mitogen-Activated Protein Kinase Signaling vol.9, pp.4, 2014, https://doi.org/10.1007/s11481-014-9542-4
  3. Effect of Jun N-terminal kinase 1 and 2 on the replication of Penicillium marneffei in human macrophages vol.82, 2015, https://doi.org/10.1016/j.micpath.2015.03.014