Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.048

Thymoquinone Suppresses Migration of Human Renal Carcinoma Caki-1 Cells through Inhibition of the PGE2-Mediated Activation of the EP2 Receptor Pathway  

Park, Geumi (College of Pharmacy, Keimyung University)
Song, Na-Young (College of Dentistry, Younsei University)
Kim, Do-Hee (Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University)
Lee, Su-Jun (Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine)
Chun, Kyung-Soo (College of Pharmacy, Keimyung University)
Publication Information
Biomolecules & Therapeutics / v.29, no.1, 2021 , pp. 64-72 More about this Journal
Abstract
Renal cell carcinoma (RCC) is likely to metastasize to other organs, and is often resistant to conventional chemotherapies. Thymoquinone (TQ), a phytochemical derived from the seeds of Nigella sativa, has been shown to inhibit migration and metastasis in various cancers. In this study, we assessed the effect of TQ on the migratory activity of human RCC Caki-1 cells. We found that treatment with TQ reduced the proteolytic activity of matrix metalloproteinase-9 (MMP-9) in Caki-1 cells. TQ significantly repressed prostaglandin E2 (PGE2) production, its EP2 receptor expression as well as the activation of Akt and p38, the wellknown upstream signal proteins of MMP-9. In addition, treatment with butaprost, a PGE2 agonist, also induced MMP-9 activity and migration/invasion in Caki-1 cells. Moreover, pharmacological inhibitors of PI3K/Akt and p38 remarkably attenuated butaprost-induced Caki-1 cell migration and invasion, implying that activation of PI3K/Akt and p38 is a bridge between the PGE2-EP2 axis and MMP-9-dependent migration and invasion. Taken together, these data suggest that TQ is a promising anti-metastatic drug to treat advanced and metastatic RCC.
Keywords
Thymoquinone; Renal cell carcinoma (RCC); Prostaglandin $E_2$ ($PGE_2$); EP2 receptor; MMP-9;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jana, S., Chatterjee, K., Ray, A. K., DasMahapatra, P. and Swarnakar, S. (2016) Regulation of matrix metalloproteinase-2 activity by COX-2-PGE2-pAKT axis promotes angiogenesis in endometriosis. PLoS ONE 11, e0163540.   DOI
2 Johnson, C. and Galis, Z. S. (2004) Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cellmediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 24, 54-60.   DOI
3 Kallakury, B. V., Karikehalli, S., Haholu, A., Sheehan, C. E., Azumi, N. and Ross, J. S. (2001) Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin. Cancer Res. 7, 3113-3119.
4 Kolli-Bouhafs, K., Boukhari, A., Abusnina, A., Velot, E., Gies, J. P., Lugnier, C. and Ronde, P. (2012) Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest. New Drugs 30, 2121-2131.   DOI
5 Kundu, J., Chun, K. S., Aruoma, O. I. and Kundu, J. K. (2014) Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Mutat. Res. 768, 22-34.   DOI
6 Lee, J., Banu, S. K., Subbarao, T., Starzinski-Powitz, A. and Arosh, J. A. (2011) Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits invasion of human immortalized endometriotic epithelial and stromal cells through suppression of metalloproteinases. Mol. Cell. Endocrinol. 332, 306-313.   DOI
7 Lee, Y. S., Lan Tran, H. T. and Van Ta, Q. (2009) Regulation of expression of matrix metalloproteinase-9 by JNK in Raw 264.7 cells: presence of inhibitory factor(s) suppressing MMP-9 induction in serum and conditioned media. Exp. Mol. Med. 41, 259-268.   DOI
8 Li, Z., Zhang, Y., Kim, W. J. and Daaka, Y. (2013) PGE2 promotes renal carcinoma cell invasion through activated RalA. Oncogene 32, 1408-1415.   DOI
9 Nabeshima, K., Inoue, T., Shimao, Y. and Sameshima, T. (2002) Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int. 52, 255-264.   DOI
10 Lynch, C. C. and Matrisian, L. M. (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70, 561-573.   DOI
11 Nakanishi, M. and Rosenberg, D. W. (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 35, 123-137.   DOI
12 Ruhul Amin, A. R., Senga, T., Oo, M. L., Thant, A. A. and Hamaguchi, M. (2003) Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1beta: a role for the dual signalling pathways, Akt and Erk. Genes Cells 8, 515-523.   DOI
13 Stamenkovic, I. (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 10, 415-433.   DOI
14 Sternlicht, M. D. and Werb, Z. (2001) How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463-516.   DOI
15 Tavakkoli, A., Mahdian, V., Razavi, B. M. and Hosseinzadeh, H. (2017) Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone. J. Pharmacopuncture 20, 179-193.   DOI
16 Sugimoto, Y. and Narumiya, S. (2007) Prostaglandin E receptors. J. Biol. Chem. 282, 11613-11617.   DOI
17 Sun, G. G., Wei, C. D., Jing, S. W. and Hu, W. N. (2014) Interactions between filamin A and MMP-9 regulate proliferation and invasion in renal cell carcinoma. Asian Pac. J. Cancer Prev. 15, 3789-3795.   DOI
18 Sung, Y. M., He, G., Hwang, D. H. and Fischer, S. M. (2006) Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 25, 5507-5516.   DOI
19 Wang, D. and Dubois, R. N. (2010) Eicosanoids and cancer. Nat. Rev. Cancer 10, 181-193.   DOI
20 Wang, X., Nagase, H., Watanabe, T., Nobusue, H., Suzuki, T., Asami, Y., Shinojima, Y., Kawashima, H., Takagi, K., Mishra, R., Igarashi, J., Kimura, M., Takayama, T., Fukuda, N. and Sugiyama, H. (2010) Inhibition of MMP-9 transcription and suppression of tumor metastasis by pyrrole-imidazole polyamide. Cancer Sci. 101, 759-766.   DOI
21 Webb, A. H., Gao, B. T., Goldsmith, Z. K., Irvine, A. S., Saleh, N., Lee, R. P., Lendermon, J. B., Bheemreddy, R., Zhang, Q., Brennan, R. C., Johnson, D., Steinle, J. J., Wilson, M. W. and Morales-Tirado, V. M. (2017) Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 17, 434.   DOI
22 Yasumitsu, H., Miyazaki, K., Umenishi, F., Koshikawa, N. and Umeda, M. (1992) Comparison of extracellular matrix-degrading activities between 64-kDa and 90-kDa gelatinases purified in inhibitor-free forms from human schwannoma cells. J. Biochem. 111, 74-80.   DOI
23 Woo, S. M., Min, K. J., Chae, I. G., Chun, K. S. and Kwon, T. K. (2015) Silymarin suppresses the PGE2-induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways. Mol. Carcinog. 54, 216-228.   DOI
24 Wu, Y. and Zhou, B. P. (2009) Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8, 3267-3273.   DOI
25 Yamagata, S., Tanaka, R., Ito, Y. and Shimizu, S. (1989) Gelatinases of murine metastatic tumor cells. Biochem. Biophys. Res. Commun. 158, 228-234.   DOI
26 Yen, J. H., Khayrullina, T. and Ganea, D. (2008) PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood 111, 260-270.   DOI
27 Yimer, E. M., Tuem, K. B., Karim, A., Ur-Rehman, N. and Anwar, F. (2019) Nigella sativa L. (black cumin): a promising natural remedy for wide range of illnesses. Evid. Based Complement. Alternat. Med. 2019, 1528635.
28 Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z. and Hanahan, D. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737-744.   DOI
29 Arumugam, P., Subramanian, R., Priyadharsini, J. V. and Gopalswamy, J. (2016) Thymoquinone inhibits the migration of mouse neuroblastoma (Neuro-2a) cells by down-regulating MMP-2 and MMP9. Chin. J. Nat. Med. 14, 904-912.   DOI
30 Asting, A. G., Iresjo, B. M., Nilsberth, C., Smedh, U. and Lundholm, K. (2017) Host knockout of E-prostanoid 2 receptors reduces tumor growth and causes major alterations of gene expression in prostaglandin E2-producing tumors. Oncol. Lett. 13, 476-482.   DOI
31 Gholamnezhad, Z., Shakeri, F., Saadat, S., Ghorani, V. and Boskabady, M. H. (2019) Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna. J. Phytomed. 9, 195-212.
32 Bianchi, M., Sun, M., Jeldres, C., Shariat, S. F., Trinh, Q. D., Briganti, A., Tian, Z., Schmitges, J., Graefen, M., Perrotte, P., Menon, M., Montorsi, F. and Karakiewicz, P. I. (2012) Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann. Oncol. 23, 973-980.   DOI
33 Cairns, P. (2010) Renal cell carcinoma. Cancer Biomark. 9, 461-473.   DOI
34 Chun, K. S. and Shim, M. (2015) EP2 induces p38 phosphorylation via the activation of Src in HEK-293 cells. Biomol. Ther. (Seoul) 23, 539-548.   DOI
35 Giannandrea, M. and Parks, W. C. (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 7, 193-203.   DOI
36 Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C. and Kaidi, A. (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377-386.   DOI
37 Grimm, M. O., Wolff, I., Zastrow, S., Frohner, M. and Wirth, M. (2010) Advances in renal cell carcinoma treatment. Ther. Adv. Urol. 2, 11-17.   DOI
38 Hsu, H. H., Chen, M. C., Day, C. H., Lin, Y. M., Li, S. Y., Tu, C. C., Padma, V. V., Shih, H. N., Kuo, W. W. and Huang, C. Y. (2017) Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol. 23, 1171-1179.   DOI
39 Guo, F., Liu, J., Han, X., Zhang, X., Lin, T., Wang, Y., Bai, J. and Han, J. (2019) FBXO22 suppresses metastasis in human renal cell carcinoma via inhibiting MMP-9-mediated migration and invasion and VEGF-mediated angiogenesis. Int. J. Biol. Sci. 15, 647-656.   DOI