DOI QR코드

DOI QR Code

Anti-obese and Blood Flow Improvement Activities of Ginseng Berry on the 45%Kcal High Fat Diet Supplied Mouse

  • Lee, Sol (Department Global Public Health and Korean Medicine Management, College of Korean Medicine, Graduate School, Kyung Hee University) ;
  • Lee, Hae-Jeung (Department of Food and Nutrition, Gachon University) ;
  • Chun, Yoon-Seok (Central Research Center, Aribio Co. Ltd.) ;
  • Seol, Du-jin (Central Research Center, Aribio Co. Ltd.) ;
  • Kim, Jong-Kyu (Central Research Center, Aribio Co. Ltd.) ;
  • Ku, Sae-Kwang (Department Global Public Health and Korean Medicine Management, College of Korean Medicine, Graduate School, Kyung Hee University) ;
  • Lee, Young-Joon (Department Global Public Health and Korean Medicine Management, College of Korean Medicine, Graduate School, Kyung Hee University)
  • Received : 2018.03.31
  • Accepted : 2018.04.19
  • Published : 2018.04.30

Abstract

Objectives : The present study investigated the anti-obese and blood flow improvement activities of aqueous extracts of ginseng berry (GBe) on the mild diabetic obese mice as compared with metformin. Methods : After end of 56 days of continuous oral administrations of GBe 150, 100 and 50 mg/kg, or metformin 250 mg/kg, anti-obese and blood flow improvement effects - the changes of body weights, body and abdominal fat density by in live dual-energy x-ray absorptionmetry (DEXA), tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) levels, aorta and serum cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and endothelin (ET)-1 levels, aorta phosphorylated PI3K (pPI3K), phosphorylated Akt (pAkt) and phosphorylated p38 MAPK (pp38 MAPK) levels were systemically analyzed. In addition, aorta vascular dilation and constriction related gene mRNA expressions - PI3K, Akt, eNOS, p38 MAPK and ET-1 were also analyzed by realtime RT-PCR. Results : The obesity and related blood flow impairment, induced by 84 days of continuous HFD supply, were significantly inhibited by 56 days of continuous oral treatment of GBe 150, 100 and 50mg/kg, dose-dependently, and they also dramatically normalized the changes of the aorta vascular dilation and constriction related gene mRNA expressions, also dose-dependently. Especially, GBe 150 mg/kg constantly showed favorable inhibitory activities against type II diabetes related obesity and vascular disorders through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities, as comparable to those of metformin 250 mg/kg in HFD mice. Conclusion : By assessing the key parameters for anti-obese and blood flow improvement activities on the HFD-induced mild diabetic obese mice, the present work demonstrated that GBe 150, 100 and 50 mg/kg showed favorable anti-obese and blood flow improvement effects in HFD-induced type II diabetic mice, through PI3K/Akt pathway and p38 MAPK mediated cGMP, NO and ET-1 expression modulatory activities.

Keywords

References

  1. Wendel AA, Purushotham A, Liu LF, Belury MA. Conjugated linoleic acid fails to worsen insulin resistance but induces hepatic steatosis in the presence of leptin in ob/ob mice. Journal of lipid research. 2008;49(1):98-106. https://doi.org/10.1194/jlr.M700195-JLR200
  2. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature reviews Immunology. 2006;6(10):772-783. https://doi.org/10.1038/nri1937
  3. James PT, Leach R, Kalamara E, Shayeghi research. 2001;9 Suppl 4:228S-233S. https://doi.org/10.1038/oby.2001.123
  4. Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes & metabolism. 2003;29(4 Pt 2):6S9-18. https://doi.org/10.1016/S1262-3636(03)72783-9
  5. Kunitomi M, Wada J, Takahashi K, Tsuchiyama Y, Mimura Y, Hida K, Miyatake N, Fujii M, Kira S, Shikata K, Maknio H. Relationship between reduced serum IGF-I levels and accumulation of visceral fat in Japanese men. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2002;26(3):361-369. https://doi.org/10.1038/sj.ijo.0801899
  6. Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, Hashimoto I, Okada T, Yasuhara A, Nakatsuka A, Shikata K, Hourai S, Futami J, Watanabe E, Matsuki Y, HiramatsuR, Akagi S, Makino H, Kanwar YS. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(30):10610-10615.
  7. Zhou M, Li P, Kang Q, Zhang L, Shang J, Liu W, Liu H. Shen-Yuan-Dan Capsule Inhibiting Inflammatory Reaction by Regulating Insulin Receptor Substrate 1/PI3K/Akt/NF-kB Signaling Pathway in Apoliprotein E Knockout Mice Fed with a High-Fat Diet. Acta Cardiologica Sinica. 2017;33(3):285-291.
  8. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O'Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics -2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480-486. https://doi.org/10.1161/CIRCULATIONAHA.108.191259
  9. Kao YT, Wang ST, Shih CM, Lin FY, Tsao NW, Chiang KH, Chan CS, Lin YC, Hung MY, Hsieh MH, Shyu KG, Chen JW, Chang NC, Yeh JS, Huang CY. Arterial Stiffness Index and Coronary Artery Plaques in Patients with Subclinical Coronary Atherosclerosis. Acta Cardiologica Sinica. 2015;31(1): 59-65.
  10. Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice. PloS one. 2016;11(6): e0157085. https://doi.org/10.1371/journal.pone.0157085
  11. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104(4):503-516. https://doi.org/10.1016/S0092-8674(01)00238-0
  12. Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell death and differentiation. 2004;11 Suppl 1:S12-16. https://doi.org/10.1038/sj.cdd.4401444
  13. Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJ, Van Eck M. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS letters. 2006;580(23): 5588-5596. https://doi.org/10.1016/j.febslet.2006.08.022
  14. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrine reviews. 2005;26(3):439-451. https://doi.org/10.1210/er.2005-0005
  15. Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus. Call for data. Diabetes. 1991;40(6):653-659. https://doi.org/10.2337/diab.40.6.653
  16. Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation. 1993;87(5S):V67-V76.
  17. Oelze M, Daiber A, Brandes RP, Hortmann M, Wenzel P, Hink U, Schulz E, Mollnau H, von Sandersleben A, Kleschyov AL, Mulsch A, Li H, Forstermann U, Munzel T. Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension (Dallas, Tex:1979). 2006;48(4):677-684. https://doi.org/10.1161/01.HYP.0000239207.82326.29
  18. Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschatz M, Smolenski A, Walter U, Skatchkov M, Meinertz T, Munzel T. Vasodilatorstimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circulation research. 2000;87(11):999-1005. https://doi.org/10.1161/01.RES.87.11.999
  19. Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free radical biology & medicine. 2006;40(2):183-192. https://doi.org/10.1016/j.freeradbiomed.2005.06.018
  20. Oelze M, Kroller-Schon S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, ZinBius E, Agdauletova S, Gottschlich A, Steven S, Schulz E, Bottari SP, Mayoux E, Munzel T, Daiber A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetesinduced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PloS one. 2014;9(11):e112394. https://doi.org/10.1371/journal.pone.0112394
  21. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 2002;51(6):1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  22. Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC, Yuan CS. Steamed American ginseng berry: ginsenoside analyses and anticancer activities. Journal of agricultural and food chemistry. 2006;54(26):9936-9942. https://doi.org/10.1021/jf062467k
  23. Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee S, Kim MG, Kim KT, Leem KH, Ko SK. Inhibitory effects of ginsenoside re isolated from ginseng berry on histamine and cytokine release in human mast cells and human alveolar epithelial cells. Journal of ginseng research. 2012;36(4):369-374. https://doi.org/10.5142/jgr.2012.36.4.369
  24. Lee DI, Kim ST, Lee DH, Yu JM, Jang SK, Joo SS. Ginsenoside-free molecules from steam-dried ginseng berry promote ethanol metabolism: an alternative choice for an alcohol hangover. Journal of food science. 2014;79(7):C1323-1330. https://doi.org/10.1111/1750-3841.12527
  25. Dey L, Zhang L, Yuan CS. Anti-diabetic and anti-obese effects of ginseng berry extract: comparison between intraperitoneal and oral administrations. The American journal of Chinese medicine. 2002;30(4): 645-647. https://doi.org/10.1142/S0192415X02000648
  26. Xie JT, Aung HH, Wu JA, Attel AS, Yuan CS. Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. The American journal of Chinese medicine. 2002;30(2-3):187-194. https://doi.org/10.1142/S0192415X02000442
  27. Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS. American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. Journal of food science. 2007;72(8):S590-594. https://doi.org/10.1111/j.1750-3841.2007.00481.x
  28. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer chemotherapy and pharmacology. 2007;59(5):589-601. https://doi.org/10.1007/s00280-006-0300-z
  29. Shao ZH, Xie JT, Vanden Hoek TL, Mehendale S, Aung H, Li CQ, Qin Y, Schumacker PT, Becker LB, Yuan CS. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochimica et biophysica acta. 2004;1670(3):165-171. https://doi.org/10.1016/j.bbagen.2003.12.001
  30. Mehendale SR, Wang CZ, Shao ZH, Li CQ, Xie JT, Aung HH, Yuan CS. Chronic pretreatment with American ginseng berry and its polyphenolic constituents attenuate oxidant stress in cardiomyocytes. European journal of pharmacology. 2006;553(1-3): 209-214. https://doi.org/10.1016/j.ejphar.2006.09.051
  31. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, Yuan CS. Antioxidant effects of ginsenoside Re in cardiomyocytes. European journal of pharmacology. 2006;532(3):201-207. https://doi.org/10.1016/j.ejphar.2006.01.001
  32. Zhang SC, Jiang XL. The anti-stress effect of saponins extracted from panax ginseng fruit and the hypophyseal-adrenal system. Yao xue xue bao = Acta pharmaceutica Sinica. 1981;16(11):860-863.
  33. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. Journal of ginseng research. 2014;38(2):89-96. https://doi.org/10.1016/j.jgr.2013.10.001
  34. Kim MH, Lee J, Jung S, Kim JW, Shin JH, Lee HJ. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet. Journal of ginseng research. 2017;41(2):120-126. https://doi.org/10.1016/j.jgr.2016.01.004
  35. Choi JS, Kim JW, Park JB, Pyo SE, Hong YK, Ku SK, Kim MR. Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes. International journal of molecular medicine. 2017;39(6):1437-1451. https://doi.org/10.3892/ijmm.2017.2967
  36. Kim MR, Kim JW, Park JB, Hong YK, Ku SK, Choi JS. Anti-obesity effects of yellow catfish protein hydrolysate on mice fed a 45% kcal high-fat diet. International journal of molecular medicine. 2017;40(3):784-800. https://doi.org/10.3892/ijmm.2017.3063
  37. van Haare J, Kooi ME, van Teeffelen JW, Vink H, Slenter J, Cobelens H, Strijkers GJ, Koehn D, Post MJ, van Bilsen M. Metformin and sulodexide restore cardiac microvascular perfusion capacity in diet-induced obese rats. Cardiovascular diabetology. 2017;16(1): 47. https://doi.org/10.1186/s12933-017-0525-7
  38. Lee JE, Kang SJ, Choi SH, Song CH, Lee YJ, Ku SK. Fermentation of Green Tea with 2% Aquilariae lignum Increases the Anti-Diabetic Activity of Green Tea Aqueous Extracts in the High Fat-Fed Mouse. Nutrients. 2015;7(11):9046-9078. https://doi.org/10.3390/nu7115447
  39. Ku SK, Bae JS. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa. Archives of pharmacal research. 2014;37(11):1454-1463. https://doi.org/10.1007/s12272-014-0403-8
  40. Yoon EK, Ku SK, Lee W, Kwak S, Kang H, Jung B, Bae JS. Antitcoagulant and antiplatelet activities of scolymoside. BMB reports. 2015;48(10):577-582. https://doi.org/10.5483/BMBRep.2015.48.10.044
  41. Barton M, Carmona R, Morawietz H, d'Uscio LV, Goettsch W, Hillen H, Haudenschild CC, Krieger JE, Munter K, Lattmann T, Lüscher TF, Shaw S. Obesity is associated with tissuespecific activation of renal angiotensin-converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension (Dallas, Tex : 1979). 2000;35(1 Pt 2):329-336. https://doi.org/10.1161/01.HYP.35.1.329
  42. Adiarto S, Emoto N, Iwasa N, Yokoyama M. Obesity-induced upregulation of myocardial endothelin-1 expression is mediated by leptin. Biochemical and biophysical research communications. 2007;353(3):623-627. https://doi.org/10.1016/j.bbrc.2006.12.066
  43. Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food & nutrition research. 2016; 60:32010. https://doi.org/10.3402/fnr.v60.32010
  44. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. The Journal of biological chemistry. 1951;193(1):265-275.
  45. Hogan MF, Liu AW, Peters MJ, Willard JR, RabbaniZ, Bartholomew EC, Ottley A, Hull RL. Markers of Islet Endothelial Dysfunction Occur in Male B6.BKS(D)-Leprdb/J Mice and May Contribute to Reduced Insulin Release. Endocrinology. 2017;158(2):293-303.
  46. Schmittgen TD, Livak KJ. Analyzing realtime PCR data by the comparative CT method. Nature protocols. 2008;3(6):1101-1108. https://doi.org/10.1038/nprot.2008.73
  47. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-DDCt}$ Method. Methods (San Diego, Calif). 2001;25(4) :402-408. https://doi.org/10.1006/meth.2001.1262
  48. Kim CM, Yi SJ, Cho IJ, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients. 2013;5(11):4316-4332. https://doi.org/10.3390/nu5114316
  49. Kang SJ, Lee JE, Lee EK, Jung DH, Song CH, Park SJ, Choi SH, Han CH, Ku SK, Lee YJ. Fermentation with Aquilariae Lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients. 2014;6(9):3536-3571. https://doi.org/10.3390/nu6093536
  50. Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for female fertility and obesity. Reproduction (Cambridge, England). 2005;130(5):583-597. https://doi.org/10.1530/rep.1.00521
  51. Mazur-Bialy AI, Bilski J, Wojcik D, Brzozowski B, Surmiak M, Hubalewska-Mazgaj M, Chmura A, Magierowski M, Magierowska K, Mach T, Brzozowski T. Beneficial Effect of Voluntary Exercise on Experimental Colitisin Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers. Nutrients. 2017;9(4).
  52. Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2009;19(6):440-449. https://doi.org/10.1016/j.numecd.2009.01.006
  53. Mertens I, Van Gaal LF. Obesity, haemostasis and the fibrinolytic system. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2002;3(2):85-101. https://doi.org/10.1046/j.1467-789X.2002.00056.x
  54. Nagai N, Hoylaerts MF, Cleuren AC, Van Vlijmen BJ, Lijnen HR. Obesity promotes injury induced femoral artery thrombosis in mice. Thrombosis research. 2008;122(4):549-555. https://doi.org/10.1016/j.thromres.2007.12.017
  55. Rosito GA, D'Agostino RB, Massaro J, Lipinska I, Mittleman MA, Sutherland P, Wilson PW, Levy D, Muller JE, Tofler GH. Association between obesity and a prothrombotic state: the Framingham Offspring Study. Thrombosis and haemostasis. 2004;91(4):683-689. https://doi.org/10.1160/TH03-01-0014
  56. Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 2003;144(6):2195-2200. https://doi.org/10.1210/en.2003-0285
  57. Chen L, Wang L, Li Y, Wuang L, Liu Y, Pang N, Luo Y, He J, Zhang L, Chen N, Li R, Wu J. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia. Frontiers in physiology. 2018;9:197. https://doi.org/10.3389/fphys.2018.00197
  58. Valenta I, Dilsizian V, Quercioli A, Jüngling FD, Ambrosio G, Wahl R, Schindler TH. Impact of Obesity and Bariatric Surgery on Metabolism and Coronary Circulatory Function. Current Cardiology Reports. 2013;16(1):433.
  59. Tousoulis D, Davies G, Stefanadis C, Toutouzas P, Ambrose JA. Inflammatory and thrombotic mechanisms in coronary atherosclerosis. Heart (British Cardiac Society). 2003;89(9):993-997. https://doi.org/10.1136/heart.89.9.993
  60. Kaye SM, Pietilainen KH, Kotronen A, Joutsi-Korhonen L, Kaprio J, Yki-Jarvinen H, Silveira A, Hamsten A, Lassila R, Rissanen A. Obesityrelated derangements of coagulation and fibrinolysis: a study of obesitydiscordant monozygotic twin pairs. Obesity (Silver Spring, Md). 2012;20(1):88-94. https://doi.org/10.1038/oby.2011.287
  61. Kaji N, Nagakubo D, Hashida S, Takahashi S, Kuratani M, Hirai N, Shirai M, Asai F. Shortened blood coagulation times in genetically obese rats and dietinduced obese mice. The Journal of veterinary medical science. 2013;75(9):1245-1248. https://doi.org/10.1292/jvms.13-0029
  62. Yamamoto Y, Yamashita T, Kitagawa F, Sakamoto K, Giddings JC, Yamamoto J. The effect of the long term aspirin administration on the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Thrombosis research. 2010;125(3):246-252. https://doi.org/10.1016/j.thromres.2009.11.008
  63. Xie W, Zhai Z, Yang Y, Kuang T, Wang C. Free fatty acids inhibit TM-EPCR expressionthrough JNK pathway: an implication for the development of the prothrombotic state in metabolic syndrome. Journal of thrombosis and thrombolysis. 2012;34(4):468-474. https://doi.org/10.1007/s11239-012-0793-8
  64. Chen H, Qu Z, Fu L, Dong P, Zhang X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. Journal of food science. 2009;74(6):C469-474. https://doi.org/10.1111/j.1750-3841.2009.01231.x
  65. Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free radical biology & medicine. 2014;73:383-399. https://doi.org/10.1016/j.freeradbiomed.2014.05.016
  66. Rudyk O, Eaton P. Examining a role for PKG Iaoxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Free radical biology & medicine. 2017;110:390-398. https://doi.org/10.1016/j.freeradbiomed.2017.07.007
  67. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411-415. https://doi.org/10.1038/332411a0
  68. Ishida F, Saeki K, Saeki T, Ishikawa K, Ihara M, Kamei T, Yano M. Suppressive effects of the endothelin receptor (ETA) antagonist BQ-123 on ET-1-induced reduction of lipoprotein lipase activity in 3T3-L1 adipocytes. Biochemical pharmacology. 1992;44(7):1431-1436. https://doi.org/10.1016/0006-2952(92)90545-T
  69. Uchida Y, Irie K, Tsukahara F, Ohba K, Ogawa A, Fujii E, Muraki T. Endothelin-1, but not endothelin-3, suppresses lipoprotein lipase gene expression in brown adipocytes differentiated in culture. European journal of pharmacology. 1995;291(1):33-41. https://doi.org/10.1016/0922-4106(95)90186-8
  70. Parrinello G, Scaglione R, Pinto A, Corrao S, Cecala M, Di Silvestre G, Amato P, Licata A, Licata G. Central obesity and hypertension: the role of plasma endothelin. American journal of hypertension. 1996;9(12 Pt 1):1186-1191. https://doi.org/10.1016/S0895-7061(96)00259-2
  71. Tiret L, Poirier O, Hallet V, McDonagh TA, Morrison C, McMurray JJ, Dargie HJ, Arveiler D, Ruidavets JB, Luc G, Evans A, Cambien F. The Lys198Asn polymorphism in the endothelin-1 gene is associated with blood pressure in overweight people. Hypertension (Dallas, Tex : 1979). 1999;33(5):1169-1174. https://doi.org/10.1161/01.HYP.33.5.1169
  72. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocrine reviews. 2007;28(5):463-491. https://doi.org/10.1210/er.2007-0006
  73. Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, Panza JA. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100(8):820-825. https://doi.org/10.1161/01.CIR.100.8.820
  74. Zeng G, Nystrom FH,Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101(13):1539-1545. https://doi.org/10.1161/01.CIR.101.13.1539
  75. Eringa EC, Stehouwer CD, van Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. American journal of physiology Heart and circulatory physiology. 2004;287(5):H2043-2048. https://doi.org/10.1152/ajpheart.00067.2004
  76. Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends in endocrinology and metabolism: TEM. 2009;20(6):295-302. https://doi.org/10.1016/j.tem.2009.03.005
  77. Ko SH, Cao W, Liu Z. Hypertension management and microvascular insulin resistance in diabetes. Current hypertension reports. 2010;12(4):243-251. https://doi.org/10.1007/s11906-010-0114-6
  78. Bourgoin F, Bachelard H, Badeau M, Melancon S, Pitre M, Lariviere R, Nadeau A. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, highsucrose diet. American journal of physiology Heart and circulatory physiology. 2008;295(3):H1044-H1055. https://doi.org/10.1152/ajpheart.00516.2008
  79. Wang Y, Cheng KK, Lam KS, Wu D, Wang Y, Huang Y, Vanhoutte PM, Sweeney G, Li Y, Xu A. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60(11):3044-3054. https://doi.org/10.2337/db11-0666
  80. Li J, Peng L, Du H, Wang Y, Lu B, Xu Y, Ye X, Shao J. The Protective Effect of Beraprost Sodium on Diabetic Cardiomyopathy through the Inhibition of the p38 MAPK Signaling Pathway in High-Fat-Induced SD Rats. International journal of endocrinology. 2014;2014:901437.
  81. Chen S, Qiong Y, Gardner DG. A role for p38 mitogen-activated protein kinase and c-myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension (Dallas, Tex : 1979). 2006;47(2):252-258. https://doi.org/10.1161/01.HYP.0000198424.93598.6b
  82. Soldatos G, Cooper ME. Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes research and clinical practice. 2008;82 Suppl 1:S75-79. https://doi.org/10.1016/j.diabres.2008.09.042
  83. Sato S, Kawamura H, Takemoto M, Maezawa Y, Fujimoto M, Shimoyama T, Koshizaka M, Tsurutani Y, Watanabe A, Ueda S, Halevi K, Saito Y, Yokote K. Halofuginone prevents extracellular matrix deposition in diabetic nephropathy. Biochemical and biophysical research communications. 2009;379(2):411-416. https://doi.org/10.1016/j.bbrc.2008.12.088
  84. Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC, Rifkin DB, Ramirez F. p38 MAPK is an early determinant of promiscuous Smad 2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. The Journal of biological chemistry. 2009;284(9):5630-5636. https://doi.org/10.1074/jbc.M806962200
  85. Wang Z, Ka SO, Lee Y, Park BH, Bae EJ. Butein induction of HO-1 by p38 MAPK/ Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice. European journal of pharmacology. 2017;799:201-210. https://doi.org/10.1016/j.ejphar.2017.02.021