Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.10.120

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1  

Cho, Jang-Eun (Department of Biomedical Laboratory Science, Daegu Health College)
Park, Sang-Jung (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University)
Cho, Sang-Nae (Department of Microbiology, Yonsei University College of Medicine)
Lee, Hye-Young (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University)
Kim, Yoon-Suk (Department of Biomedical Laboratory Science, College of Health Scineces, Yonsei University)
Publication Information
BMB Reports / v.45, no.10, 2012 , pp. 583-588 More about this Journal
Abstract
Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.
Keywords
JNK; Leukotactin-1; Macrophage; Mycobacterium tuberculosis; p38 MAPK;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 World Health Organization. WHO report 2007: Global tuberculosis control; surveillance, planning, financing. p. 277, Geneva: WHO, 2007.
2 Law, K., Weiden, M., Harkin, T., Tchou-Wong, K., Chi, C. and Rom, W. N. (1996) Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am. J. Respir. Crit. Care. Med. 153, 799-804.   DOI   ScienceOn
3 Cooper, A. M. and Khader, S. A. (2008) The role of cytokines in the initiation, expansion, and control of cellular immuniy to tuberculosis. Immunol. Rev. 226, 191-204.   DOI   ScienceOn
4 Fenton, M. J. (1998) Macrophages and tuberculosis. Curr. Opin. Hematol. 5, 72-78.   DOI
5 Ferrara, G., Bleck, B., Richeldi, L., Reibman, J., Fabbri, L. M., Rom, W. N. and Condos, R. (2008) Mycobacterium tuberculosis induces CCL18 expression in human macrophages. Scand. J. Immunol. 68, 668-674.
6 Peters, W. and Ernst, J. D. (2003) Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect. 5, 151-158.   DOI   ScienceOn
7 Jin, H. T., Jeong, Y. H., Park, H. J. and Ha, S. J. (2011) Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 44, 217-231.   과학기술학회마을   DOI   ScienceOn
8 Majumder, N., Bhattacharjee, S., Bhattacharyya (Majumdar), S., Dey, R., Guha, P., Pal, N. K. and Majumdar, S. (2008) Restoration of impaired free radical generation and proinflammatory cytokines by MCP-1 in mycobacterial pathogenesis. Scand. J. Immunol. 67, 329-339.   DOI   ScienceOn
9 Lee, J. S., Song, C. H., Lim, J. H., Lee, K. S., Kim, H. J., Park, J. K., Paik, T. H., Jung, S. S. and Jo, E. K. (2003) Monocyte chemotactic protein-1 production in patients with active pulmonary tuberculosis and tuberculous pleurisy. Inflamm. Res. 52, 297-304.   DOI
10 Algood, H. M., Chan, J. and Flynn, J. L. (2003) Chemokines and tuberculosis. Cytokine Growth Factor Rev. 14, 467-477.   DOI   ScienceOn
11 Saukkonen, J. J., Bazydlo, B., Thomas, M., Strieter, R. M., Keane, J. and Kornfeld, H. (2002) Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infect. Immun. 70, 1684-1693.   DOI
12 Mendez-Samperio, P., Trejo, A. and Perez, A. (2008) Mycobacterium bovis Bacillus Calmette-Guerin induces CCL5 secretion via the Toll-like receptor 2-NF-kappaB and -Jun N-terminal kinase signaling pathways. Clin. Vaccine Immunol. 15, 277-283.   DOI   ScienceOn
13 Davis, J. M. and Ramakrishnan, L. (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37-49.   DOI   ScienceOn
14 Stegelmann, F., Bastian, M., Swoboda, K., Bhat, R., Kiessler, V., Krensky, A. M., Roellinghoff, M., Modlin, R. L. and Stenger, S. (2005) Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 175, 7474-7483.   DOI
15 Moser, B., Wolf, A. and Loetscher, P. (2004) Chemokine; multiple levels of leukocyte migration control. Trends Immunol. 25, 75-84.   DOI   ScienceOn
16 Riedel, D. D. and Kaufmann, S. H. (1997) Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan. Infect. Immun. 65, 4620-4623.
17 Karashima, K., Mujaida, N., Fujimura, M., Yasui, M., Nakazumi, Y., Matsuda, T. and Matsushima, K. (1997) Elevated chemokine levels in bronchoalveolar lavage fluid of tuberculosis patients. Am. J. Respir. Crit. Care Med. 155, 1474-1477.   DOI   ScienceOn
18 Sadek, M. I., Sada, E., Toossi, Z., Schwander, S. K. and Rich, E. A. (1998) Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am. J. Respir. Cell Mol. Biol. 19, 513-521.   DOI   ScienceOn
19 Zhang, Y. and Dong, C. (2007) Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol. Life Sci. 64, 2771-2789.   DOI
20 Mendez-Samperio, P., Trejo, A. and Miranda, E. (2005) Mycobacterium bovis BCG induces CXC chemokine ligand 8 secretion via the MEK-dependent signal pathway in human epitheial cells. Cell Immunol. 234, 9-15.   DOI   ScienceOn
21 Roach, S. K. and Schorey, J. S. (2002) Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect. Immun. 70, 3040-3052.   DOI   ScienceOn
22 Mendez-Samperio, P., Trejo, A. and Perez, A. (2008) Mycobacterium bovis Bacillus Calmette-Guerin (BCG) stimulates IL-10 production via the PI3K/Akt and p38 MAPK pathways in human lung epithelial cells. Cell Immunol. 251, 37-42.   DOI   ScienceOn
23 A, S. K., Bansal, K., Holla, S., Verma-Kumar, S., Sharma, P. and Balaji, K. N. (2012) ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Mol. Immunol. 49, 655-663.   DOI   ScienceOn
24 Lee, S. H., Kim, D. W., Back, S. S., Hwang, H. S., Park, E. Y., Kang, T. C., Kwon, O. S., Park, J. H., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2011) Transduced Tat-Annexin protein suppresses inflammationassociated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. BMB Rep. 44, 484-489.   DOI   ScienceOn
25 Obata, T., Brown, G. E. and Yaffe, M. B. (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit. Care Med. 28, 67-77   DOI   ScienceOn
26 Zhang, W. and Liu, H. T. (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18.   DOI   ScienceOn
27 Youn, B. S., Zhang, S. M., Lee, E. K., Park, D. H., Broxmeyer, H. E., Murphy, P. M., Locati, M., Pease, J. E., Kim, K. K., Antol, K. and Kwon, B. S. (1997) Molecular cloning of leukotactin-1: a novel human beta-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. J. Immunol. 159, 5201-5205.
28 Surewicz, K., Aung, H., Kanost, R. A., Jones, L., Hejal, R. and Toossi, Z. (2004) The differential interaction of p38 MAP kinase and tumor necrosis factor-alpha in human alveolar macrophages and monocytes induced by Mycobacterium tuberculosis. Cell Immunol. 228, 34-41.   DOI   ScienceOn
29 Song, C. H., Lee, J. S., Lee, S. H., Lim, K., Kim, H. J., Park, J. K., Paik, T. H. and Jo, E. K. (2003) Role of mitogen-activated protein kinase pathway in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23, 194-201.   DOI   ScienceOn
30 Lee, H. M., Shim, D. M., Kim, K. K., Lee, J. S., Paik, T. H. and Jo, E. K. (2009) Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of Mycobacterium tuberculosis. J. Clin. Immunol. 29, 45-56.
31 Cho, J. E., Kim, Y. S., Park, S., Cho, S. N. and Lee, H. (2010) Mycobacterium tuberculosis-induced expression of Leukotactin-1 is mediated by the PI3-K/PDK1/Akt signaling pathway. Mol. Cells 29, 35-39.   DOI   ScienceOn
32 Jeong, J. H., Ryu, D. S., Suk, D. H. and Lee, D. S. (2011) Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells. BMB Rep. 44, 399-404.   DOI   ScienceOn