• Title/Summary/Keyword: oxygen

Search Result 15,971, Processing Time 0.047 seconds

Comparison of Post-Harvest Character and Storability at Several Temperature for Lactuca indica L. Baby and Adult Leaves (왕고들빼기 어린잎과 성체의 수확 후 특성과 온도별 저장성 비교)

  • Kim, Ju Young;Han, Su Jeong;Wang, Lixia;Choi, In-Lee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2019
  • Lactuca indica L. ('Seonhyang') baby leaves were harvested after cultivation for 4 weeks (less than 10 cm plant height) and adults were cultivated for 8 weeks ($20{\pm}5cm$ plant height). The respiration rate and the ethylene production rate of Lactuca indica leaves were higher than those of the baby leaves but the DPPH radical scavenging ability was lower than baby leaves. The $L^*$, $a^*$ and $b^*$ values did not show any significant difference between baby leaves and adult leaves but the chlorophyll content was higher in adult leaves. All adult and baby leaves of Lactuca indica were stored at $2^{\circ}C$, $8^{\circ}C$, and $20^{\circ}C$, respectively. The higher the storage temperature, the higher the fresh weight loss rate and weight loss rate of adult leaves was lower at $2^{\circ}C$ and $8^{\circ}C$. The visual quality of Lactuca indica leaves were determined by the panel test during storage and it deteriorated faster as the storage temperature increased. The shelf life that calculated the period of maintaining higher than 3 points of visual quality was longer than 1.6 days at $2^{\circ}C$, 1.4 days at $8^{\circ}C$ and 1.5 days at $20^{\circ}C$. The oxygen and carbon dioxide concentrations within the package of Lactuca indica leaves were similar to those in atmosphere. The chlorophyll content was maintained higher at lower storage temperature in the last storage day and the off-odor was higher in baby leaves than in the adult leaves of Lactuca indica L.

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana (모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과)

  • Kim, Kyeongnam;Kim, Chaeeun;Park, Jungeun;Yoo, Jinsung;Kim, Woosung;Jeon, Hwang-Ju;Kim, Jun-Ran;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.354-361
    • /
    • 2021
  • Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.

Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET (SWAT-WET을 이용한 안동호의 수질 및 수생태계 모델 구축)

  • Woo, Soyoung;Kim, Yongwon;Kim, Wonjin;Kim, Sehoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.719-730
    • /
    • 2021
  • The objective of this study is to develop the water quality and aquatic ecosystem model for Andong lake using SWAT-WET (Soil and Water Assessment Tool-Water Ecosystem Tool) and to evaluate the applicability of WET. To quantify the pollutants load flowing into Andong lake, a watershed model of SWAT was constructed for Andong Dam basin (1,584 km2). The calibration results for Dam inflow and water quality loads (SS, T-N, T-P) were analyzed that average R2 was more than 0.76, 0.69, 0.84, and 0.60 respectively. The calibrated SWAT results of streamflow and nutrients concentration was used into WET input data. WET was calibrated and validated for water temperature, dissolved oxygen, and water quality concentration (T-N, T-P) of Andong lake. The WET calibrated results was analyzed that PBIAS was +19%, -13%, +4%, and +26.5% respectively and showed that it was simulated to a significant level compared with the observation data. The observed dry weight (gDW/m2) of zoobenthos was less than 0.5, but the average value of simulation was analyzed to be 0.8, which is because the WET model considers zoobenthos with a broader concept. Although accurate calibration is difficult due to the lack of observed data, SWAT-WET can analyze the effects of environmental change in the upstream watershed on the lake based on long-term simulation based on watershed model. Therefore, the results of this study can be used as basic data for managing the aquatic environment of Andong lake.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.

Genetic Environments of Au-Ag-bearing Geumhwa Hydrothermal Vein Deposit (함 금-은 금화 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The Geumhwa Au-Ag deposit is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into two stages (stage I and II) by major tectonic fracturing. Stage II is economically barren. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early substage, marked by deposition of pyrite with minor wolframite; middle substage, characterized by introduction of electrum and base-metal sulfides with Cu-As and/or Cu-Sb sulfosalts; late substage, marked by hematite and Bi-sulfosalts with secondary minerals. Changes in vein mineralogy reflect decreases in temperature and sulfur fugacity with a concomitant increase in oxygen fugacity. Fluid inclusion data indicate progressive decreases in temperature and salinity within each substage with increasing paragenetic time. During the early portion of stage I, high-temperature (≥410℃), high-salinity fluids (up to ≈44 equiv. wt. % NaCl) formed by condensation during decompression of a magmatic vapor phase. During waning of early substage, high-temperature, high-salinity fluids gave way to progressively cooler, more dilute fluids associated with main Au-Ag mineralization (middle) and finally to ≈180℃ and ≥0.7 equiv. wt. % NaCl fluids associated with hematite and sulfosalts (± secondary) mineralization (late substage). These trends are interpreted to indicate progressive mixing of high- and medium to low-salinity hydrothermal fluids with cooler, more dilute, oxidizing meteoric waters. The Geumhwa Au-Ag deposit may represent a vein-type system transitional between porphyry-type and epithermal-type.

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts (양파껍질 추출물의 항균, 항산화 및 항노화 효과에 관한 연구)

  • Kim, Jung Eun;Kim, A Reum;Kim, Min Ji;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • In this study, the antibacterial, antioxidative and inhibitory effects of Allium cepa peel extracts on tyrosinase and elastase were investigated. MIC values of the ethyl acetate fraction of Allium cepa peel on especially, S. aureus among the skin resident flora (Staphylococcus aureus, S. aureus; Propionibacterium acnes, P. acnes; Pityrosporum ovale, P. ovale; Escherichia coli, E. coli) were 0.06%. The aglycone fraction showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl radical, DPPH) scavenging activity ($FSC_{50}=5.05{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction and aglycone fraction in the luminol-dependent $Fe^{3+}-EDTA/H_2O_2$ system were 0.05 and $0.03{\mu}g/mL$, respectively. The cellular protective effect of the aglycone fraction on the rose-bengal sensitized photohemolysis of human erythrocytes exhibited more prominent (${\tau}_{50}$, 480 min at $25{\mu}g/mL$). The inhibitory effects ($IC_{50}$) of the ethyl acetate fraction and aglycone fraction on tyrosinase were 9.16 and $8.68{\mu}g/mL$, the inhibitory effect ($IC_{50}$) of the aglycone fraction on elastase was $14.12{\mu}g/mL$ The transepidermal water loss of the cream containing 0.1% ethyl acetate fraction was decreased from $8.3g/m^2h$ in control to $6.8g/m^2h$ in the subjects applied with cream containing the ethyl acetate fraction. These results indicate that extract/fractions of Allium cepa peel can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS, and possibly as antiaging agents. Allium cepa peel extract could be used as a new cosmeceutical for whitening and anti-wrinkle products.