DOI QR코드

DOI QR Code

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars

토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향

  • Park, Do-Gyun (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Lee, Jong-Mun (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Choi, Eun-Jung (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Gwon, Hyo-Suk (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Lee, Hyoung-Seok (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Park, Hye-Ran (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences) ;
  • Oh, Taek-Keun (Dept. of Bio Environmental Chemistry, Chungnam National University) ;
  • Lee, Sun-Il (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
  • 박도균 (국립농업과학원 기후변화평가과) ;
  • 이종문 (국립농업과학원 기후변화평가과) ;
  • 최은정 (국립농업과학원 기후변화평가과) ;
  • 권효숙 (국립농업과학원 기후변화평가과) ;
  • 이형석 (국립농업과학원 기후변화평가과) ;
  • 박혜란 (국립농업과학원 기후변화평가과) ;
  • 오택근 (충남대학교 생물환경화학과) ;
  • 이선일 (국립농업과학원 기후변화평가과)
  • Received : 2022.10.07
  • Accepted : 2022.11.15
  • Published : 2022.12.30

Abstract

Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

바이오차는 바이오매스를 산소가 제한된 환경에서 고온(300~700℃)으로 열분해하여 얻어지는 탄소 함량이 높은 생성물이다. 최근 바이오차는 농업 부산물을 최소화하고 순환 경제의 효율성을 높이는 효과적인 도구로 농업 및 환경 분야에서 다양한 용도로 널리 사용되고 있다. 바이오차를 만드는 재료로 왕겨, 가축분, 보릿짚 등 여러종류의 유기성 부산물이 사용되고 있으며, 약 10% 바이오차 적용(wt/wt)은 작물의 수확량, 토양 탄소 격리량을 높여준다는 연구 결과가 있다. 우리나라 농경지의 경우 논에서 밭으로 토지 이용이 전환되거나 간척으로 인한 갯벌이 논으로 개간되고, 산림에서 밭이나 시설재배지로 개간되는 경우가 발생한다. 그러므로 농경지 전환으로 인한 농경지별 바이오차 적용 효과가 상이할 것으로 판단된다. 그러나 국내에서 농경지 유형별 바이오차 종류와 투입 수준에 따른 토양 탄소저장 연구는 여전히 미흡한 상황이다. 이에 본 연구는 농경지 토양별 바이오차 종류와 투입 수준에 따른 토양 탄소저장과 무기화되어 배출되는 이산화탄소(CO2) 배출량을 정량적으로 평가하였다. 본 연구에 사용한 재료는 보릿짚, 가축분을 수거, 건조 등 전처리 과정을 거친 후 충남 예산에 있는 바이오차 제조공장 탄화로를 이용하여 TLUD (Top Lit Up Draft) 상향 통풍형 열분해 방식으로 약 500℃에서 제조하였다. Kinetic 모델 적용 결과 토양에 투입된 탄소 무기화는 바이오차를 투입하지 않으면 토양 종류별 8.2~16.5% 비율로 탄소원이 무기화 되어 이산화탄소로 배출되었다. 노지 밭 토양에서 15.5~16.5%로 가장 높았고, 간척지 토양에서 8.2~8.7%로 가장 낮았다. 이는 토양 내 탄소 함량이 높은 토양에서 유기물의 분해가 상대적으로 높아 배출되는 이산화탄소(CO2)는 탄소 함량에 비례하여 증가하는 것으로 판단된다. 바이오차를 투입한 토양에서 탄소 함량이 증가함에도 상대적으로 무기화되는 비율은 낮아졌다. 국제 바이오차협 회에서는 H:C 비율이 0.7 이하면 100년 이상 토양 내 탄소 격리효과가 있는 것으로 인정되고 있다. 본 연구를 통해 바이오차의 원료물질이 상이한 보릿짚, 가축분 바이오차 간 탄소 무기화에 미치는 영향이 상이할 것으로 판단했지만, 각각의 바이오차 H:C 비율이 0.30~0.39로 0.7 이하임으로 토양에 혼합하였을 때 탄소 무기화의 비율이 낮고 탄소 격리의 효과가 나타났다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01556801)" Rural Development Administration, Republic of Korea.

References

  1. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P. and Smith, P., "Climate-smart soils", Nature, 532, pp. 49~57. (2016). https://www.nature.com/articles/nature17174 https://doi.org/10.1038/nature17174
  2. Reguyal, F. and Sarmah, A. K., "Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol", Science of the Total Environment, 628, pp. 722~730. (2018). https://doi.org/10.1016/j.scitotenv.2018.01.323
  3. Takolpuckdee, P., "Transformation of Agricultural Market Waste Disposal to Biochar Soil Amendments", Procedia Environmental Sciences, 20, pp. 64~70. (2014). https://doi.org/10.1016/j.proenv.2014.03.010
  4. Dang, Q., Mba Wright, M. and Brown, R. C., "Ultralow carbon emissions from coal-fired power plants through bio-oil co-firing and biochar sequestration", Environmental Science & Technology, 49(24), pp. 14688~14695. (2015). https://doi.org/10.1021/acs.est.5b03548
  5. Kauffman, N., Dumortier, J., Hayes, D. J., Brown, R. C. and Laird, D. A., "Producing energy while sequestering carbon? the relationship between biochar and agricultural productivity", Biomass Bioenergy, 63, pp. 167~176. (2014). https://doi.org/10.1016/j.biombioe.2014.01.049
  6. Nelissen, V., Saha, B. K., Ruysschaert, G. and Boeckx, P., "Effect of different biochar and fertilizer types on N2O and NO emissions", Soil Biology and Biochemistry, 70, pp 244~255. (2014). https://doi.org/10.1016/j.soilbio.2013.12.026
  7. Jeong, C. Y., Dodla, S. K. and Wang, J. J., "Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products", Chemosphere, 142, pp. 4~13. (2016). https://doi.org/10.1016/j.chemosphere.2015.05.084
  8. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G., "Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties", J. Environ. Qual., 41, pp. 990~1000. (2012). https://doi.org/10.2134/jeq2011.0070
  9. Gerdelidani, A. F. and Hosseini, H. M., "Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils", Soil Res., 56, pp. 136~144. (2018). https://doi.org/10.1071/SR17091
  10. Muegue, L. C. D., Gonzalez, J. C. A. and Mesa, G. P., "Characterization and Potential Use of Biochar for the Remediation of Coal Mine Waste Containing Efflorescent Salts", Sustainability, 9(11), p. 2100. (2017). https://doi.org/10.3390/su9112100
  11. Kang, C.L., Zhu, L., Wang, Y., Wang, Y., Xiao K. and Tian, T., "Adsorption of Basic Dyes Using Walnut Shell-based Biochar Produced by Hydrothermal Carbonization", Chem. Res. Chin. Univ., 34, pp. 622~627. (2018). https://doi.org/10.1007/s40242-018-8018-0
  12. Komnitsas, K., Zaharaki, D., Pyliotis, I., Vamvuka, D. and Bartzas, G., "Assessment of Pistachio Shell Biochar Quality and Its Potential for Adsorption of Heavy Metals", Waste Biomass Valorizat., 6, pp. 805~816. (2015). https://doi.org/10.1007/s12649-015-9364-5
  13. Crombie, K., Masek, O., Sohi, S. P., Brownsort, P. and Cross, A., "The effect of pyrolysis conditions on biochar stability as determined by three methods", Global Change Biol. Bioenergy, 5, pp. 122~131. (2013). https://doi.org/10.1111/gcbb.12030
  14. Masek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E. and Hurst, P., "Microwave and slow pyrolysis biochar-Comparison of physical and functional properties", J. Analy. Appl. Pyrol., 100, pp. 41~48. (2013). https://doi.org/10.1016/j.jaap.2012.11.015
  15. Mendez, A., Terradillos, M. and Gasco, G., "Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures", J. Analy. Appl. Pyrol., 102, pp. 124~130. (2013). https://doi.org/10.1016/j.jaap.2013.03.006
  16. Olmo, M., Alburquerque, J. A., Barron, V., del Campillo, M. C., Gallardo, A., Fuentes, M. and Villar, R., "Wheat growth and yield responses to biochar addition under Mediterranean climate conditions", Biology and Fertility of Soils, 50(8), pp. 1177~1187. (2014). https://doi.org/10.1007/s00374-014-0959-y
  17. Ventura, M., Zhang, C., Baldi, E., Fornasier, F., Sorrenti, G., Panzacchi, P. and Tonon, G., "Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European", Journal of Soil Science, 65(1), pp. 186~195. (2014). https://doi.org/10.1111/ejss.12095
  18. Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G. and Kim, K. H., "Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.)response", Chemosphere, 142, pp. 153~159. (2016). https://doi.org/10.1016/j.chemosphere.2015.06.041
  19. Chen, J., Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H. and Fuhrmann, J. J., "Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate", Sci Total Environ, 574, pp. 24~33. (2017). https://doi.org/10.1016/j.scitotenv.2016.08.190
  20. IBI, "Standardized product definition and product testing guidelines for biochar that is used in soil IBI-STD-2.1.", International Biochar Initiative (IBI), Washington, USA. (2015). http://www.biochar-international.org/characterizationstandard (Accession date: November 23, 2015)
  21. Xie, T., Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E. and Spokas, K., "Characteristics and Applications of Biochar for Environmental Remediation: A Review", Critical Reviews in Environmental Science and Technology, 45(9), pp. 939~969. (2015). https://doi.org/10.1080/10643389.2014.924180
  22. Lehmann, J. and Stephen, J. (Eds.), Biochar for environmental management: Science, technology and implementation, Routledge. (2015).
  23. Godlewska, P., Schmidt, H. P., Ok, Y. S. and Oleszczuk, P., "Biochar for composting improvement and contaminants reduction. A review", Bioresour Technol, 246, pp. 193~202. (2017). https://doi.org/10.1016/j.biortech.2017.07.095
  24. Beiyuan, J., Awad, Y. M., Beckers, F., Wang, J., Tsang, D. C. W., Ok, Y. S., Wang, S. L., Wang, H. and Rinklebe, J., "(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar", Environ Int., 135, p. 105376. (2020). https://doi.org/10.1016/j.envint.2019.105376
  25. Jeffery, S., Verheijen, F. G. A., van der Velde, M. and Bastos, A. C., "A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis", Agriculture, Ecosystems & Environment, 144(1), pp. 175~187. (2011). https://doi.org/10.1016/j.agee.2011.08.015
  26. Wolf, B., Zheng, X., Bruggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z. and Butterbach-Bahl, K., "Grazing-induced reduction of natural nitrous oxide release from continental steppe", Nature, 464(7290), pp. 881~884. (2010). https://doi.org/10.1038/nature08931
  27. Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Kim, S., Kwon, J.-H., Tsang, D. C. W. and Ok, Y. S., "Biochar-based adsorbents for carbon dioxide capture: A critical review", Renewable and Sustainable Energy Reviews, 119, p. 109582. (2020). https://doi.org/10.1016/j.rser.2019.109582
  28. Igalavithana, A. D., Ok, Y. S., Usman, A. R. A., Al-Wabel, M. I., Oleszczuk, P. and Lee, S. S., "The Effects of Biochar Amendment on Soil Fertility. In Agricultural and Environmental Applications of Biochar", Advances and Barriers, 63, pp. 123~144. (2015). https://doi.org/10.2136/sssaspecpub63.2014.0040
  29. Shin, J., Jang, E., Park, S., Ravindran, B. and Chang, S. W ., "Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system", J Environ Manage, 244, pp. 92~98. (2019). https://doi.org/10.1016/j.jenvman.2019.04.099.1
  30. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D. and Ok, Y. S., "Biochar as a sorbent for contaminant management in soil and water: A review", Chemosphere, 99, pp. 19~33. (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  31. Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S. and Ok, Y. S., "Engineered/designer biochar for contaminant removal/ immobilization from soil and water: Potential and implication of biochar modification", Chemosphere, 148, pp. 276~291. (2016). https://doi.org/10.1016/j.chemosphere.2016.01.043
  32. Jain, S., Singh, A., Khare, P., Chanda, D.. Mishra, D., Shanker, K. and Karak, T., "Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils", Ecol. Eng., 108, pp. 211~219. (2017). https://doi.org/10.1016/j.ecoleng.2017.08.039
  33. Liu, Y., Zhu, J., Ye, C., Zhu, P., Ba, Q., Pang, J. and Shu, L., "Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area", Sci. Total Environ., 625, pp. 1218~1224. (2018). https://doi.org/10.1016/j.scitotenv.2018.01.003
  34. Herath, H. M. S. K., Camps-Arbestain, M. and Hedley, M., "Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol", Geoderma, 209, pp. 188~197. (2013). https://doi.org/10.1016/j.geoderma.2013.06.016
  35. Jones, B. E. H., Haynes, R. J. and Phillips, I. R., "Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties", J. Environ. Manage., 91, pp. 2281~2288. (2010). https://doi.org/10.1016/j.jenvman.2010.06.013
  36. Singh, B., Singh, B. P. and Cowie, A. L., "Characterisation and evaluation of biochars for their application as a soil amendment", Aust. J. Soil Res., 48, pp. 516~525. (2010a). https://doi.org/10.1071/SR10058
  37. Villagra-Mendoza, K. and Horn, R., "Effect of biochar addition on hydraulic functions of two textural soils", Geoderma, 326, pp. 88~95. (2018). https://doi.org/10.1016/j.geoderma.2018.03.021
  38. Abujabhah, I. S., Bound, S. A., Doyle, R. and Bowman, J. P., "Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil", Appl. Soil Ecol., 98, pp. 243~253. (2016). https://doi.org/10.1016/j.apsoil.2015.10.021
  39. Lehmann, J., Johannes Lehmann, Pereira da Silva Jr., J.Steiner, C., Nehls, T., Zech, W. and Glaser, B., "Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments", Plant Soil, 249, pp. 343~357. (2003). https://doi.org/10.1023/A:1022833116184
  40. Kibblewhite, M. G., Ritz, K. and Swif, M. J., "Soil health in agricultural systems", Philos. Trans. R. Soc. B., 363, pp. 685~701. (2008). https://doi.org/10.1098/rstb.2007.2178
  41. Tully, K. and Ryals, R., "Nutrient cycling in agroecosystems: Balancing food and environmental objectives", Agroecol. Sustain. Food Syst., 41, pp. 761~798. (2017). https://doi.org/10.1080/21683565.2017.1336149
  42. El-Naggar, A., Lee, S. S., Awad, Y. M., Yang, X., Ryu, C. K., Rizwan, M., Rinklebe, J., Tsang, D. C. W. and Ok, Y. S., "Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils", Geoderma, 332, pp. 100~108. (2018). https://doi:10.1016/j.geoderma.2018.06.017
  43. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D., "Biochar effects on soil biota - A review", Soil Biology and Biochemistry, 43(9), pp. 1812~1836. (2011). https://doi.org/10.1016/j.soilbio.2011.04.022
  44. Xiao, X., Chen, B., Chen, Z., Zhu, L. and Schnoor, J. L., "Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review", Environ Sci Technol, 52(9), pp. 5027~5047. (2018). https://doi.org/10.1021/acs.est.7b06487
  45. Shaukat, M., Samoy-Pascual, K., Maas, E. and Ahmad, A., "Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice", J Environ Manage., 248, p. 109242. (2019). https://doi.org/10.1016/j.jenvman.2019.07.013
  46. Martos, S., Mattana, S., Ribas, A., Albanell, E. and Domene, X., "Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: A case study in a Mediterranean calcareous soil", Journal of Soils and Sediments, 20(1), pp. 220~233. (2019). https://doi.org/10.1007/s11368-019-02400-9
  47. Oh, Y.-Y., Kim, Y.-J., Lee, S.-H., Ryu, J.-H., Kim, S., Lee, J.-T., Jun, J.-B. and Kim, K.-Y., "Effects of Paddy-Upland Rotation on Soil Characteristics and Crop Productivity in Rice Fields on Reclaimed Tidal land", Journal of Environmental Science International, 27(8), pp. 641~650. (2018). https://doi.org/10.5322/jesi.2018.27.8.641
  48. Lee, Y. B., Hoon, C., Hwang, J. Y., Lee, I. B. and Kim, P. J., "Enhancement of phosphate desorption by silicate in soils with salt accumulation", Soil Science and Plant Nutrition, 50(4), pp. 493~499. (2011). https://doi.org/10.1080/00380768.2004.10408505
  49. Eo, J.-U., Park, K.-C. and Yeon, B.-R., "Changes in Soil Biota Affected by the Application of Organic Materials in Reclaimed Upland and Paddy-converted Soils Cultivated with Korea Ginseng", Korean Journal of Soil Science and Fertilizer, 44(5), pp. 872~877. (2011). https://doi.org/10.7745/kjssf.2011.44.5.872
  50. Kalus, K., Koziel, J. and Opalinski, S., "A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production", Applied Sciences, 9(17), p. 3494. (2019). https://doi.org/10.3390/app9173494
  51. International Biochar Initiative (IBI), "Standardized product definition and product testing guidelines for biochar that is used in soil (Aka IBI biochar standards)", IBI-STD-1.1. (2014). https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (Accession date: March 25, 2019)
  52. NIAS, "Prescription of Fertilizer Use by Crop", National Institute of Agricultural Sciences, Wanju, Korea, ISBN 978-89-480-6048-5 93520. (2019).
  53. Zeng, W., Xu, C., Wu, J., Huang, J. and Ma, T., "Effect of salinity on soil respiration and nitrogendynamics", Ecological Chemistry and EngineeringS., 20(3), pp. 519~530. (2013). https://doi.org/10.2478/eces-2013-0039
  54. Lee, S. I., Kim, G. Y., Gwon, H. S., Lee, J. S., Choi, E. J. and Shin, J. D., "Effects of Different Nitrogen Fertilizer and Biochar Applications on CO2 and N2O Emissions from Upland Soil in the Closed Chamber", Korean Journal of Soil Science and Fertilizer, 53(4), pp. 431~445. (2020). https://doi.org/10.7745/KJSSF.2020.53.4.431
  55. Lee, S.-I., Kang, S.-S., Choi, E.-J., Gwon, H.-S., Lee, H.-S., Lee, J.-M., Lim, S.-S. and Choi, W.-J., "Soil Carbon Storage in Upland Soils by Biochar Application in East Asia", Korean J. Environ. Agric., 40, pp. 219~230. (2021). https://doi.org/10.5338/KJEA.2021.40.3.26
  56. Lee, K. S., Lee, S. I., Lee, D. S., Kwak, J. H., Hao, X., Ro, H. M. & Woo-Jung Choi, W. J., "Carbon mineralization and retention of livestock manure composts with different substrate qualities in three soils", Journal of Soils and Sediments, 12(3), pp. 312~322. (2012). https://doi.org/10.1007/s11368-011-0458-9
  57. Hailegnaw, N. S., Mercl, F., Pracke, K., Szakova, J. and Tlustos, P., "Mutual Relationships of Biochar and Soil PH, CEC, and Exchangeable Base Cations in a Model Laboratory Experiment", J. Soils Sediments, 19, pp. 2405~2416. (2019). https://doi.org/10.1007/s11368-019-02264-z
  58. Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H. and Andersen, M. N., "Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures", Geoderma, 341, pp. 10~17. (2019). https://doi.org/10.1016/j.geoderma.2019.01.016
  59. Kibblewhite, M. G., Ritz, K. and Swift, M. J., "Soil health in agricultural systems. Philosophical Transactions of the Royal Society B", Biological Sciences, 363(1492), pp. 685~701. (2008). https://doi:10.1098/rstb.2007.2178
  60. Keith, A., Singh, B. and Singh, B. P., "Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil", Environmental Science & Technology, 45(22), pp. 9611~9618. (2011). https://doi.org/10.1021/es202186j
  61. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K. and Naidu, R., "Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions", Environment International, 87, pp. 1~12. (2016). https://doi.org/10.1016/j.envint.2015.10.018
  62. Wu, D., Senbayram, M., Zang, H., Ugurlar, F., Aydemir, S., Bruggemann, N., Kuzyakov, Y., Bol, R. and Blagodatskaya, E., "Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils", Appl. Soil Ecol., 129, pp. 121~127. (2018). https://doi.org/10.1016/j.apsoil.2018.05.009
  63. Chintala, R., Schumacher, T.E., Kumar, S., Malo, D.D., Rice, J.A., Bleakley, B., Chilom, G., Clay, D.E., Julson, J.L., Papiernik, S.K. and Gud, Z.R., "Molecular characterization of biochars and their influence on microbiological properties of soil", J. Hazard. Mater, 279, pp. 244~256. (2014). https://doi.org/10.1016/j.jhazmat.2014.06.074
  64. Zimmerman, A. R., Gao, B. and Ahn, M.-Y., "Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils", Soil Boil. Biochem., 43, pp. 1169~1179. (2011). https://doi.org/10.1016/j.soilbio.2011.02.005
  65. Trumbore, S. E., Chadwick, O. A. and Amundson, R., "Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change", Science, 272(5260), pp. 393~396. (1996). https://doi.org/10.1126/science.272.5260.393
  66. Venkatesh, G., Gopinath, K. A., Reddy, K. S., Reddy, B. S., Prabhakar, M., Srinivasarao, C. and Singh, V. K., "Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use", Sustainability, 14(4), p. 2295. (2022). https://doi.org/10.1016/j.soilbio.2018.03.003