DOI QR코드

DOI QR Code

Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET

SWAT-WET을 이용한 안동호의 수질 및 수생태계 모델 구축

  • Woo, Soyoung (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Yongwon (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Wonjin (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Sehoon (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Seongjoon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 우소영 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김용원 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김원진 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김세훈 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2021.06.07
  • Accepted : 2021.07.19
  • Published : 2021.09.30

Abstract

The objective of this study is to develop the water quality and aquatic ecosystem model for Andong lake using SWAT-WET (Soil and Water Assessment Tool-Water Ecosystem Tool) and to evaluate the applicability of WET. To quantify the pollutants load flowing into Andong lake, a watershed model of SWAT was constructed for Andong Dam basin (1,584 km2). The calibration results for Dam inflow and water quality loads (SS, T-N, T-P) were analyzed that average R2 was more than 0.76, 0.69, 0.84, and 0.60 respectively. The calibrated SWAT results of streamflow and nutrients concentration was used into WET input data. WET was calibrated and validated for water temperature, dissolved oxygen, and water quality concentration (T-N, T-P) of Andong lake. The WET calibrated results was analyzed that PBIAS was +19%, -13%, +4%, and +26.5% respectively and showed that it was simulated to a significant level compared with the observation data. The observed dry weight (gDW/m2) of zoobenthos was less than 0.5, but the average value of simulation was analyzed to be 0.8, which is because the WET model considers zoobenthos with a broader concept. Although accurate calibration is difficult due to the lack of observed data, SWAT-WET can analyze the effects of environmental change in the upstream watershed on the lake based on long-term simulation based on watershed model. Therefore, the results of this study can be used as basic data for managing the aquatic environment of Andong lake.

본 연구에서는 상류의 휴·폐광산을 비롯한 다양한 점오염원과 비점오염원으로부터 유실되는 오염물질의 영향을 받는 안동호를 대상으로 수질 및 수생태 모델인 SWAT-WET을 구축하고, 적용성을 평가하고자 한다. 안동호르 유입되는 오염물질에 대한 정량적인 평가를 위해 유역모델인 SWAT을 안동댐 유역(1,584 km2)을 대상으로 구축하여, 검보정을 수행하였다. 유출량과 수질 부하량(SS, T-N, T-P)에 대한 검보정 결과 R2는 각각 0.76, 0.69, 0.84, 0.60 이상으로 분석되었다. 검보정된 SWAT의 유출량과 영양물질의 농도를 WET의 입력자료로 적용하여 안동호에 대한 수질, 수생태 모델 WET을 구축하였다. WET의 매개변수 민감도 분석 결과를 이용하여, 안동호의 수온, 용존산소, 수질농도(T-N, T-P)를 대한 검보정을 수행하였다. 검보정 결과 PBIAS는 각각 +19%, -13%, +4%, +26.5% 로 분석되었으며, 관측 자료를 유의한 수준으로 모의하는 것을 확인하였다. 저서동물의 관측 건중량(gDW/m2)은 0.5 이하였으나 모의 건중량의 평균은 0.8로 분석되었으며, 이는 WET 모델이 더 넓은 개념의 저서동물을 고려하기 때문으로 나타났다. 관측자료 부족으로 정확한 검보정은 어렵지만, 유역모델과의 연계를 통한 장기간 모의와 상류 유역환경변화가 호소에 미치는 영향을 분석할 수 있으므로 안동호의 수환경 관리를 위한 기초 자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050001).

References

  1. Arnold, J.G., Williams, J.R., Srinivasan, R., and King, K.W. (1996). SWAT manual. USDA, Agricultural Research Service and Blackland Research Center, TX, U.S.
  2. Cho, M.S. (2016). Prediction of foodweb dynamics in reservoir aquatic ecosystem using AQUATOX. Ph. D. dissertation, Konkuk University.
  3. Chung, S.W., and Lee, H.S. (2011). "Analysis of microcystis bloom in Daecheong reservoir using ELCOM-CAEDYM." Journal of Korean Society on Water Environment, KSWE, Vol. 27, No. 1, pp. 73-87.
  4. Chung, S.W., Oh, J.K., and Ko, I.H. (2005). "Simulations of temporal and spatial distributions of rainfall-induced turbidity flow in a reservoir using CE-QUAL-W2." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 8, pp. 655-664. https://doi.org/10.3741/JKWRA.2005.38.8.655
  5. Cole, T.M., and Wells, S.A. (2004). CE-QUAL-W2: A two dimensional, laterally averaged, hydrodynamic and water quality model. Version 3.2 User Manual, Instruction Report EL-03-1, U.S. Army Corps of Engineers. U.S.
  6. Covich, A.P., Palmer, M.A., and Crowl, T.A. (1999). "The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling." BioScience, Oxford University Press, Vol. 49, No. 2, pp. 119-127. https://doi.org/10.2307/1313537
  7. Gong, R., Xu, L., Wang, D., Li, H., and Xu, J. (2016). "Water quality modeling for a typical urban lake based on the EFDC model." Environmental Modeling and Assessment, Vol. 21, No. 5, pp. 643-655. https://doi.org/10.1007/s10666-016-9519-1
  8. Hakanson, L., and Boulion, V.V. (2002). "Empirical and dynamical models to predict the cover, biomass and production of macrophytes in lakes." Ecological Modelling, Vol. 151, No. 2, pp. 213-243. https://doi.org/10.1016/S0304-3800(01)00458-6
  9. Hakanson, L., and Boulion, V.V. (2003). "Modelling production and biomasses of zoobenthos in lakes." Aquatic Ecology, Vol. 37, No. 3, pp. 277-306. https://doi.org/10.1023/A:1025854406257
  10. Hamilton, D.P., and Schladow, S.G. (1997). "Prediction of water quality in lakes and reservoirs. Part I - Model description." Ecological Modelling, Elsevier, Vol. 96, No. 1-3, pp. 91-110. https://doi.org/10.1016/S0304-3800(96)00062-2
  11. Hu, F., Bolding, K., Bruggeman, J., Jeppesen, E., Flindt, M.R., Gerven, L.V., Janse, J.H., Janssen, A.B.G., Kuiper, J.J., Mooij, W.M., and Trolle, D. (2016). "FABM-PCLake - linking aquatic ecology with hydrodynamics." Geoscientific Model Development, Copernicus, Vol. 9, No. 6, pp. 2271-2278. https://doi.org/10.5194/gmd-9-2271-2016
  12. Janse, J.H., and van Liere, L. (1995). "PCLake: A modelling tool for the evaluation of lake restoration scenarios." Water Science and Technology, Vol. 31, No. 8, pp. 371-374. https://doi.org/10.1016/0273-1223(95)00392-Z
  13. Jeon, J.H., Chung, S.W., Park, H.S., and Jang, J.R. (2011). "Evaluation of EFDC for the simulations of water quality in Saemangeum reservoir." Journal of Korean Society on Water Environment, KSWE, Vol. 27, No. 4, pp. 445-460.
  14. Kim, S., Jeong, H.G., Kim, H.G., Kim, J.E., Park, S.J., Kim, Y.S., and Yang, D.S. (2019). "Spatial and temporal variation of characteristics and pollution assessment of sediment in the watersheds of Andong-Dam and Imha-Dam, Korea." Journal of Environmental Science International, KESS, Vol. 28, No. 12, pp. 1085-1099. https://doi.org/10.5322/JESI.2019.28.12.1085
  15. Kim, S.J., Seo, D.I., and Ahn, K.H. (2011). "Estimation of proper EFDC parameters to improve the reproductability of thermal stratification in Korea reservoir." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 9, pp. 741-751. https://doi.org/10.3741/JKWRA.2011.44.9.741
  16. Kim, Y.-H., Kim, B.-C., Choi, K.-S., and Seo, D.-I. (2001). "Modelling of thermal stratification and transport of density flow in Soyang reservoir using the 2-D hydrodynamic water quality model, CE-QUAL-W2." Journal of the Korean Society of Water and Wastewater, KSWW, Vol. 15, No. 1, pp. 40-49.
  17. Kim, Y.S., Kim, S.J., and Kim, H.S. (2011). "Analysis of water quality characteristics using simulated long-term runoff by HEC-HMS model and EFDC model." Journal of Wetlands Research, KWS, Vol. 13, No. 3, pp. 707-720. https://doi.org/10.17663/JWR.2011.13.3.707
  18. Lombardo, A., Franco, A., Pivato, A., and Barausse, A. (2015). "Food web modeling of a river ecosystem for risk assessment of down-the-drain chemicals: A case study with AQUATOX." Science of the Total Environment, Vol. 508, pp. 214-227. https://doi.org/10.1016/j.scitotenv.2014.11.038
  19. Nakdong-river System Commission (2010). Survey of environment and ecosystem of lakes in the Nakdong River system.
  20. Nakdong-river System Commission (2013). Survey of environment and ecosystem of lakes in the Nakdong River system.
  21. Nakdong-river System Commission (2016). Survey of environment and ecosystem of lakes in the Nakdong River system.
  22. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." Journal of Hydrology, Elsevier BV, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  23. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and water assessment tool; the theoretical documentation. U.S Agricultural Research Service, Temple, TX, U.S., pp. 340-367.
  24. Nielsen, A., Bolding, K., Hu, F., and Trolle, D. (2017). "An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems." Environmental Modelling and Software, Vol. 95, pp. 358-364. https://doi.org/10.1016/j.envsoft.2017.06.032
  25. Noori, R., Yeh, H.D., Ashrafi, K., Rezazadeh, N., Bateni, S.M., Karbassi, A., Kachoosangi, F.T., and Moazami, S. (2015). "A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs." Journal of Hydrology, Elsevier, Vol. 530, pp. 645-656. https://doi.org/10.1016/j.jhydrol.2015.10.022
  26. Pratt, T.C., Gorman, O.T., Mattes, W.P., Myers, J.T., Quinlan, H.R., Schreiner, D.R., Sitar, S.P., and Yurista, P.M. (2016). "The state of Lake Superior in 2011." Great Lakes Fishery Commission, Vol. 16, No. 1.
  27. Reiss, H., and Kroncke, I. (2005). "Seasonal variability of benthic indices: an approach to test the applicability of different indices for ecosystem quality assessment." Marine Pollution Bulletin, Elsevier, Vol. 50, No. 12, pp. 1490-1499. https://doi.org/10.1016/j.marpolbul.2005.06.017
  28. Rhee, H.-P. (2012). Ecological impact assessment using AQUATOX model in Paldang reservoir. Ph. D. dissertation, Konkuk University.
  29. Rosenberg, D.M., and Resh, V.H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. Springer US, Chapman & Hall, New York-London.
  30. Saadatpour, M., Afshar, A., and Edinger, J.E. (2017). "Meta-model assisted 2D hydrodynamic and thermal simulation model (CEQUAL-W2) in deriving optimal reservoir operational strategy in selective withdrawal scheme." Water Resources Management, Springer, Vol. 31, No. 9, pp. 2729-2744. https://doi.org/10.1007/s11269-017-1658-x
  31. Tak, Y.H., Kim, Y.D., Chong, S., and Chung, S.W. (2015). "Analysis of water quality impact for water intake in Jinyang reservoir using CE-QUAL-W2." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 10, pp. 857-868. https://doi.org/10.3741/JKWRA.2015.48.10.857
  32. Tharme, R.E. (2003). "A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers." River Research and Applications, Wiley, Vol. 19, No. 5-6, pp. 397-441. https://doi.org/10.1002/rra.736
  33. Won, D.H., Jun, Y.C., Kwon, S.J., Hwang, S.J., Ahn, K.G., and Lee, J.K. (2006). "Development of Konan Saprobic Index using benthic macroinvertebrates and its application to biological stream environment assessment." Journal of Korean Society on Water Environment, KSWE, Vol. 22, No. 5, pp. 768-783.
  34. Yi, Y.K., Kim, Y.D., Park, K.Y., and Kim, W.G. (2005). "Two dimensional numerical modeling of turbidity variation in Imha reservoir." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 25, No. 4B, pp. 257-266.
  35. Ziaie, R., Mohammadnezhad, B., Taheriyoun, M., Karimi, A., and Amiri, S. (2019). "Evaluation of thermal stratification and eutrophication in Zayandeh Roud Dam Reservoir using twodimensional CE-QUAL-W2 Model." Journal of Environmental Engineering, Vol. 145, No. 6, 05019001. https://doi.org/10.1061/(asce)ee.1943-7870.0001529