Browse > Article
http://dx.doi.org/10.17137/korrae.2022.30.4.67

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars  

Park, Do-Gyun (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Lee, Jong-Mun (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Choi, Eun-Jung (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Gwon, Hyo-Suk (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Lee, Hyoung-Seok (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Park, Hye-Ran (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Oh, Taek-Keun (Dept. of Bio Environmental Chemistry, Chungnam National University)
Lee, Sun-Il (Dept. of Assessment of Climate Change, National Institute of Agricultural Sciences)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.30, no.4, 2022 , pp. 67-83 More about this Journal
Abstract
Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.
Keywords
Biochar; Carbon dioxide; Carbon mineralization; Different soils;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. I., Kim, G. Y., Gwon, H. S., Lee, J. S., Choi, E. J. and Shin, J. D., "Effects of Different Nitrogen Fertilizer and Biochar Applications on CO2 and N2O Emissions from Upland Soil in the Closed Chamber", Korean Journal of Soil Science and Fertilizer, 53(4), pp. 431~445. (2020). https://doi.org/10.7745/KJSSF.2020.53.4.431   DOI
2 IBI, "Standardized product definition and product testing guidelines for biochar that is used in soil IBI-STD-2.1.", International Biochar Initiative (IBI), Washington, USA. (2015). http://www.biochar-international.org/characterizationstandard (Accession date: November 23, 2015)
3 Igalavithana, A. D., Ok, Y. S., Usman, A. R. A., Al-Wabel, M. I., Oleszczuk, P. and Lee, S. S., "The Effects of Biochar Amendment on Soil Fertility. In Agricultural and Environmental Applications of Biochar", Advances and Barriers, 63, pp. 123~144. (2015). https://doi.org/10.2136/sssaspecpub63.2014.0040   DOI
4 Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D. and Ok, Y. S., "Biochar as a sorbent for contaminant management in soil and water: A review", Chemosphere, 99, pp. 19~33. (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071   DOI
5 Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S. and Ok, Y. S., "Engineered/designer biochar for contaminant removal/ immobilization from soil and water: Potential and implication of biochar modification", Chemosphere, 148, pp. 276~291. (2016). https://doi.org/10.1016/j.chemosphere.2016.01.043   DOI
6 Jain, S., Singh, A., Khare, P., Chanda, D.. Mishra, D., Shanker, K. and Karak, T., "Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils", Ecol. Eng., 108, pp. 211~219. (2017). https://doi.org/10.1016/j.ecoleng.2017.08.039   DOI
7 Liu, Y., Zhu, J., Ye, C., Zhu, P., Ba, Q., Pang, J. and Shu, L., "Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area", Sci. Total Environ., 625, pp. 1218~1224. (2018). https://doi.org/10.1016/j.scitotenv.2018.01.003   DOI
8 Lehmann, J., Johannes Lehmann, Pereira da Silva Jr., J.Steiner, C., Nehls, T., Zech, W. and Glaser, B., "Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments", Plant Soil, 249, pp. 343~357. (2003). https://doi.org/10.1023/A:1022833116184   DOI
9 Lehmann, J. and Stephen, J. (Eds.), Biochar for environmental management: Science, technology and implementation, Routledge. (2015).
10 Jeffery, S., Verheijen, F. G. A., van der Velde, M. and Bastos, A. C., "A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis", Agriculture, Ecosystems & Environment, 144(1), pp. 175~187. (2011). https://doi.org/10.1016/j.agee.2011.08.015   DOI
11 Kibblewhite, M. G., Ritz, K. and Swif, M. J., "Soil health in agricultural systems", Philos. Trans. R. Soc. B., 363, pp. 685~701. (2008). https://doi.org/10.1098/rstb.2007.2178   DOI
12 Tully, K. and Ryals, R., "Nutrient cycling in agroecosystems: Balancing food and environmental objectives", Agroecol. Sustain. Food Syst., 41, pp. 761~798. (2017). https://doi.org/10.1080/21683565.2017.1336149   DOI
13 El-Naggar, A., Lee, S. S., Awad, Y. M., Yang, X., Ryu, C. K., Rizwan, M., Rinklebe, J., Tsang, D. C. W. and Ok, Y. S., "Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils", Geoderma, 332, pp. 100~108. (2018). https://doi:10.1016/j.geoderma.2018.06.017   DOI
14 Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C. and Crowley, D., "Biochar effects on soil biota - A review", Soil Biology and Biochemistry, 43(9), pp. 1812~1836. (2011). https://doi.org/10.1016/j.soilbio.2011.04.022   DOI
15 Shaukat, M., Samoy-Pascual, K., Maas, E. and Ahmad, A., "Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice", J Environ Manage., 248, p. 109242. (2019). https://doi.org/10.1016/j.jenvman.2019.07.013   DOI
16 Keith, A., Singh, B. and Singh, B. P., "Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil", Environmental Science & Technology, 45(22), pp. 9611~9618. (2011). https://doi.org/10.1021/es202186j   DOI
17 Jones, B. E. H., Haynes, R. J. and Phillips, I. R., "Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties", J. Environ. Manage., 91, pp. 2281~2288. (2010). https://doi.org/10.1016/j.jenvman.2010.06.013   DOI
18 Singh, B., Singh, B. P. and Cowie, A. L., "Characterisation and evaluation of biochars for their application as a soil amendment", Aust. J. Soil Res., 48, pp. 516~525. (2010a). https://doi.org/10.1071/SR10058   DOI
19 Villagra-Mendoza, K. and Horn, R., "Effect of biochar addition on hydraulic functions of two textural soils", Geoderma, 326, pp. 88~95. (2018). https://doi.org/10.1016/j.geoderma.2018.03.021   DOI
20 Xiao, X., Chen, B., Chen, Z., Zhu, L. and Schnoor, J. L., "Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review", Environ Sci Technol, 52(9), pp. 5027~5047. (2018). https://doi.org/10.1021/acs.est.7b06487   DOI
21 Martos, S., Mattana, S., Ribas, A., Albanell, E. and Domene, X., "Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: A case study in a Mediterranean calcareous soil", Journal of Soils and Sediments, 20(1), pp. 220~233. (2019). https://doi.org/10.1007/s11368-019-02400-9   DOI
22 Oh, Y.-Y., Kim, Y.-J., Lee, S.-H., Ryu, J.-H., Kim, S., Lee, J.-T., Jun, J.-B. and Kim, K.-Y., "Effects of Paddy-Upland Rotation on Soil Characteristics and Crop Productivity in Rice Fields on Reclaimed Tidal land", Journal of Environmental Science International, 27(8), pp. 641~650. (2018). https://doi.org/10.5322/jesi.2018.27.8.641   DOI
23 Eo, J.-U., Park, K.-C. and Yeon, B.-R., "Changes in Soil Biota Affected by the Application of Organic Materials in Reclaimed Upland and Paddy-converted Soils Cultivated with Korea Ginseng", Korean Journal of Soil Science and Fertilizer, 44(5), pp. 872~877. (2011). https://doi.org/10.7745/kjssf.2011.44.5.872   DOI
24 NIAS, "Prescription of Fertilizer Use by Crop", National Institute of Agricultural Sciences, Wanju, Korea, ISBN 978-89-480-6048-5 93520. (2019).
25 Abujabhah, I. S., Bound, S. A., Doyle, R. and Bowman, J. P., "Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil", Appl. Soil Ecol., 98, pp. 243~253. (2016). https://doi.org/10.1016/j.apsoil.2015.10.021   DOI
26 Kalus, K., Koziel, J. and Opalinski, S., "A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production", Applied Sciences, 9(17), p. 3494. (2019). https://doi.org/10.3390/app9173494   DOI
27 International Biochar Initiative (IBI), "Standardized product definition and product testing guidelines for biochar that is used in soil (Aka IBI biochar standards)", IBI-STD-1.1. (2014). https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (Accession date: March 25, 2019)
28 Lee, K. S., Lee, S. I., Lee, D. S., Kwak, J. H., Hao, X., Ro, H. M. & Woo-Jung Choi, W. J., "Carbon mineralization and retention of livestock manure composts with different substrate qualities in three soils", Journal of Soils and Sediments, 12(3), pp. 312~322. (2012). https://doi.org/10.1007/s11368-011-0458-9   DOI
29 Zeng, W., Xu, C., Wu, J., Huang, J. and Ma, T., "Effect of salinity on soil respiration and nitrogendynamics", Ecological Chemistry and EngineeringS., 20(3), pp. 519~530. (2013). https://doi.org/10.2478/eces-2013-0039   DOI
30 Lee, S.-I., Kang, S.-S., Choi, E.-J., Gwon, H.-S., Lee, H.-S., Lee, J.-M., Lim, S.-S. and Choi, W.-J., "Soil Carbon Storage in Upland Soils by Biochar Application in East Asia", Korean J. Environ. Agric., 40, pp. 219~230. (2021). https://doi.org/10.5338/KJEA.2021.40.3.26   DOI
31 Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K. and Naidu, R., "Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions", Environment International, 87, pp. 1~12. (2016). https://doi.org/10.1016/j.envint.2015.10.018   DOI
32 Hailegnaw, N. S., Mercl, F., Pracke, K., Szakova, J. and Tlustos, P., "Mutual Relationships of Biochar and Soil PH, CEC, and Exchangeable Base Cations in a Model Laboratory Experiment", J. Soils Sediments, 19, pp. 2405~2416. (2019). https://doi.org/10.1007/s11368-019-02264-z   DOI
33 Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H. and Andersen, M. N., "Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures", Geoderma, 341, pp. 10~17. (2019). https://doi.org/10.1016/j.geoderma.2019.01.016   DOI
34 Kibblewhite, M. G., Ritz, K. and Swift, M. J., "Soil health in agricultural systems. Philosophical Transactions of the Royal Society B", Biological Sciences, 363(1492), pp. 685~701. (2008). https://doi:10.1098/rstb.2007.2178   DOI
35 Trumbore, S. E., Chadwick, O. A. and Amundson, R., "Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change", Science, 272(5260), pp. 393~396. (1996). https://doi.org/10.1126/science.272.5260.393   DOI
36 Wu, D., Senbayram, M., Zang, H., Ugurlar, F., Aydemir, S., Bruggemann, N., Kuzyakov, Y., Bol, R. and Blagodatskaya, E., "Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils", Appl. Soil Ecol., 129, pp. 121~127. (2018). https://doi.org/10.1016/j.apsoil.2018.05.009   DOI
37 Chintala, R., Schumacher, T.E., Kumar, S., Malo, D.D., Rice, J.A., Bleakley, B., Chilom, G., Clay, D.E., Julson, J.L., Papiernik, S.K. and Gud, Z.R., "Molecular characterization of biochars and their influence on microbiological properties of soil", J. Hazard. Mater, 279, pp. 244~256. (2014). https://doi.org/10.1016/j.jhazmat.2014.06.074   DOI
38 Zimmerman, A. R., Gao, B. and Ahn, M.-Y., "Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils", Soil Boil. Biochem., 43, pp. 1169~1179. (2011). https://doi.org/10.1016/j.soilbio.2011.02.005   DOI
39 Masek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E. and Hurst, P., "Microwave and slow pyrolysis biochar-Comparison of physical and functional properties", J. Analy. Appl. Pyrol., 100, pp. 41~48. (2013). https://doi.org/10.1016/j.jaap.2012.11.015   DOI
40 Lee, Y. B., Hoon, C., Hwang, J. Y., Lee, I. B. and Kim, P. J., "Enhancement of phosphate desorption by silicate in soils with salt accumulation", Soil Science and Plant Nutrition, 50(4), pp. 493~499. (2011). https://doi.org/10.1080/00380768.2004.10408505   DOI
41 Venkatesh, G., Gopinath, K. A., Reddy, K. S., Reddy, B. S., Prabhakar, M., Srinivasarao, C. and Singh, V. K., "Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use", Sustainability, 14(4), p. 2295. (2022). https://doi.org/10.1016/j.soilbio.2018.03.003   DOI
42 Komnitsas, K., Zaharaki, D., Pyliotis, I., Vamvuka, D. and Bartzas, G., "Assessment of Pistachio Shell Biochar Quality and Its Potential for Adsorption of Heavy Metals", Waste Biomass Valorizat., 6, pp. 805~816. (2015). https://doi.org/10.1007/s12649-015-9364-5   DOI
43 Mendez, A., Terradillos, M. and Gasco, G., "Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures", J. Analy. Appl. Pyrol., 102, pp. 124~130. (2013). https://doi.org/10.1016/j.jaap.2013.03.006   DOI
44 Olmo, M., Alburquerque, J. A., Barron, V., del Campillo, M. C., Gallardo, A., Fuentes, M. and Villar, R., "Wheat growth and yield responses to biochar addition under Mediterranean climate conditions", Biology and Fertility of Soils, 50(8), pp. 1177~1187. (2014). https://doi.org/10.1007/s00374-014-0959-y   DOI
45 Jeong, C. Y., Dodla, S. K. and Wang, J. J., "Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products", Chemosphere, 142, pp. 4~13. (2016). https://doi.org/10.1016/j.chemosphere.2015.05.084   DOI
46 Nelissen, V., Saha, B. K., Ruysschaert, G. and Boeckx, P., "Effect of different biochar and fertilizer types on N2O and NO emissions", Soil Biology and Biochemistry, 70, pp 244~255. (2014). https://doi.org/10.1016/j.soilbio.2013.12.026   DOI
47 Reguyal, F. and Sarmah, A. K., "Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol", Science of the Total Environment, 628, pp. 722~730. (2018). https://doi.org/10.1016/j.scitotenv.2018.01.323   DOI
48 Takolpuckdee, P., "Transformation of Agricultural Market Waste Disposal to Biochar Soil Amendments", Procedia Environmental Sciences, 20, pp. 64~70. (2014). https://doi.org/10.1016/j.proenv.2014.03.010   DOI
49 Dang, Q., Mba Wright, M. and Brown, R. C., "Ultralow carbon emissions from coal-fired power plants through bio-oil co-firing and biochar sequestration", Environmental Science & Technology, 49(24), pp. 14688~14695. (2015). https://doi.org/10.1021/acs.est.5b03548   DOI
50 Gerdelidani, A. F. and Hosseini, H. M., "Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils", Soil Res., 56, pp. 136~144. (2018). https://doi.org/10.1071/SR17091   DOI
51 Muegue, L. C. D., Gonzalez, J. C. A. and Mesa, G. P., "Characterization and Potential Use of Biochar for the Remediation of Coal Mine Waste Containing Efflorescent Salts", Sustainability, 9(11), p. 2100. (2017). https://doi.org/10.3390/su9112100   DOI
52 Godlewska, P., Schmidt, H. P., Ok, Y. S. and Oleszczuk, P., "Biochar for composting improvement and contaminants reduction. A review", Bioresour Technol, 246, pp. 193~202. (2017). https://doi.org/10.1016/j.biortech.2017.07.095   DOI
53 Kang, C.L., Zhu, L., Wang, Y., Wang, Y., Xiao K. and Tian, T., "Adsorption of Basic Dyes Using Walnut Shell-based Biochar Produced by Hydrothermal Carbonization", Chem. Res. Chin. Univ., 34, pp. 622~627. (2018). https://doi.org/10.1007/s40242-018-8018-0   DOI
54 Crombie, K., Masek, O., Sohi, S. P., Brownsort, P. and Cross, A., "The effect of pyrolysis conditions on biochar stability as determined by three methods", Global Change Biol. Bioenergy, 5, pp. 122~131. (2013). https://doi.org/10.1111/gcbb.12030   DOI
55 Kauffman, N., Dumortier, J., Hayes, D. J., Brown, R. C. and Laird, D. A., "Producing energy while sequestering carbon? the relationship between biochar and agricultural productivity", Biomass Bioenergy, 63, pp. 167~176. (2014). https://doi.org/10.1016/j.biombioe.2014.01.049   DOI
56 Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G., "Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties", J. Environ. Qual., 41, pp. 990~1000. (2012). https://doi.org/10.2134/jeq2011.0070   DOI
57 Ventura, M., Zhang, C., Baldi, E., Fornasier, F., Sorrenti, G., Panzacchi, P. and Tonon, G., "Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European", Journal of Soil Science, 65(1), pp. 186~195. (2014). https://doi.org/10.1111/ejss.12095   DOI
58 Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P. and Smith, P., "Climate-smart soils", Nature, 532, pp. 49~57. (2016). https://www.nature.com/articles/nature17174   DOI
59 Wolf, B., Zheng, X., Bruggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z. and Butterbach-Bahl, K., "Grazing-induced reduction of natural nitrous oxide release from continental steppe", Nature, 464(7290), pp. 881~884. (2010). https://doi.org/10.1038/nature08931   DOI
60 Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Kim, S., Kwon, J.-H., Tsang, D. C. W. and Ok, Y. S., "Biochar-based adsorbents for carbon dioxide capture: A critical review", Renewable and Sustainable Energy Reviews, 119, p. 109582. (2020). https://doi.org/10.1016/j.rser.2019.109582   DOI
61 Xie, T., Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E. and Spokas, K., "Characteristics and Applications of Biochar for Environmental Remediation: A Review", Critical Reviews in Environmental Science and Technology, 45(9), pp. 939~969. (2015). https://doi.org/10.1080/10643389.2014.924180   DOI
62 Herath, H. M. S. K., Camps-Arbestain, M. and Hedley, M., "Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol", Geoderma, 209, pp. 188~197. (2013). https://doi.org/10.1016/j.geoderma.2013.06.016   DOI
63 Shin, J., Jang, E., Park, S., Ravindran, B. and Chang, S. W ., "Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system", J Environ Manage, 244, pp. 92~98. (2019). https://doi.org/10.1016/j.jenvman.2019.04.099.1   DOI
64 Beiyuan, J., Awad, Y. M., Beckers, F., Wang, J., Tsang, D. C. W., Ok, Y. S., Wang, S. L., Wang, H. and Rinklebe, J., "(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar", Environ Int., 135, p. 105376. (2020). https://doi.org/10.1016/j.envint.2019.105376   DOI
65 Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G. and Kim, K. H., "Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.)response", Chemosphere, 142, pp. 153~159. (2016). https://doi.org/10.1016/j.chemosphere.2015.06.041   DOI
66 Chen, J., Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H. and Fuhrmann, J. J., "Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate", Sci Total Environ, 574, pp. 24~33. (2017). https://doi.org/10.1016/j.scitotenv.2016.08.190   DOI