• Title/Summary/Keyword: oxide thin film

Search Result 1,863, Processing Time 0.039 seconds

Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system (ITO-IZO 이종 타겟 이용한 Indium Zinc Tin Oxide(IZTO)박막의 특성)

  • Kim, Dae-Hyun;Rim, You-Seong;Jang, Kyung-Uk;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.439-440
    • /
    • 2008
  • Indium Zinc Tin Oxide (IZTO) thin films for transparent thin film transistor (TTFT) were deposited on glass substrate at room temperature by facing targets sputtering (FTS). The FTS system was designed to array two targets facing each other and forms the high- density plasma between. Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90wt.%, $SnO_2$ 10wt.%), the other is IZO($In_2O_3$ 90wt%, ZnO 10wt%). The conductive and optical properties of IZTO thin film is determined depending on variation of DC power and working pressure. Therefore, IZTO thin films were prepared with different DC power and working pressure. As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), a scanning electron microscopy (SEM), a Hall Effect measurement system. As a result, all IZTO thin films deposited on glass substrate showed over 80% of transmittance in visible range (400~800 nm) at $O_2$ gas flow rate. We could obtain IZTO thin films with the lowest resistivity $5.67\times10^{-4}$ [$\Omega{\cdot}cm$] at $O_2$ gas flow rate 0.4 [sccm).

  • PDF

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells (P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구)

  • Gisung Kim;Mijoung Kim;Hyojung Kim;JungYup Yang
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

The Influence of Silicon Doping on Electrical Characteristics of Solution Processed Silicon Zinc Tin Oxide Thin Film Transistor

  • Lee, Sang Yeol;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.103-105
    • /
    • 2015
  • Effect of silicon doping into ZnSnO systems was investigated using solution process. Addition of silicon was used to suppress oxygen vacancy generation. The transfer characteristics of the device showed threshold voltage shift toward the positive direction with increasing Si content due to the high binding energy of silicon atoms with oxygen. As a result, the carrier concentration was decreased with increasing Si content.

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates (고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석)

  • Yang, Dae-Gyu;Kim, Hyoung-Do;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.