T1-P019

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:ZnCo₂O₄ Thin-Film

Chil-Hyoung Lee^{1,2}, Won-Kook Choi¹, Jeon-Kook Lee¹, Doo-Jin Choi², Young-Jei Oh^{1†}

¹Opto-electronic Materials Center, Korea Institute of Science and Technology, ²Department of Advanced Materials Engineering, Yonsei University

Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:ZnCo₂O₄ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:ZnCo₂O₄ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:ZnCo₂O₄ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:ZnCo₂O₄ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of $36 \sim 85\%$, and hole mobility of $1.1 \sim 3.7$ cm²/Vs, were obtained.

Keywords: Spinel oxide, Mg:ZnCo₂O₄, Electrical property, P-type amorphous oxide semiconductor