• Title/Summary/Keyword: oxide reduction

Search Result 1,344, Processing Time 0.026 seconds

A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support (다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구)

  • Kwon, Dong Wook;Choi, Hyun Jin;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • 10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

Effect of Chamomile Flower Extract on Septic Arthritis due to Candida albicans (카모마일 꽃 추출물의 Candida albicans 기인성 감염성 관절염에 대한 효과)

  • Kim, Jeonghyeon;Kim, Songyi;Hong, Yuna;Kim, Yeong Shik;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.343-348
    • /
    • 2014
  • In the present studies, we examined effect of chamomile flowers extract (CH-Ex), which has traditionally been used as antiphlogistics in Europe for many centuries, against Candida albicans-caused septic arthritis. Candida albicans is a major etiological agent among fungal septic arthritis. This effect was investigated in a murine model of the septic arthritis. That is, mice that were given an emulsion form of C. albicans cell wall (CACW) via footpad route were treated intraperitoneally with the CH-Ex for 3 times every 3 days. Degrees of the footpad-swellings were measured with dial gauger. Data showed that the CH-Ex resulted in the reduction of swelling. For instance, at Day 9 when swelling reached the highest peak, there was up to app. 60% reduction of edema in mice injected with the CH-Ex, compared to that of the control mice that received no treatment (P<0.05). This therapeutic anti-arthritic activity appeared to be mediated by inhibitions of NO (nitric oxide) production from activated RAW264.7 macrophages and proliferation of Con A-treated T lymphocytes. Analysis by HPLC revealed that the CH-Ex contained eight polyphenolic compounds including chlorogenic acid (CRA) and rutin. We have reported the CRA and rutin respectively have the anti-arthritic activity. This correlation implicates that CRA and rutin in the CH-Ex may be responsible for the activity. Combined all together, the CH-Ex has anti-arthritic activity against C. albicans-caused septic arthritis, possibly by inhibiting NO production and proliferation of T cells. This activity seems to be contributed by, at least, CRA and rutin among the compounds in the CH-Ex.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Anti-inflammatory effects of Hataedock with Coptidis Rhizoma and Glycyrrhiza Uralensis on Allergic Rhinitis through Regulating IL-4 Activation (알레르기성 비염에서 황련-감초 하태독법의 IL-4활성 조절을 통한 항염증효과)

  • Jung, A Ram
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • The aim of this study is to evaluate the anti-inflammatory effect of Hataedock treatment using Coptidis Rhizome and Glycyrrhiza Uralensis (CG) mixed extract in allergic rhinitis induced NC/Nga mice. We divided NC/Nga mice into 3 groups as follows; allergic rhinitis-induced group after CG Hataedock treatment (CGT, n=10), no treatment group (Ctrl), allergic rhinitis elicited group (ARE). To induce allergic rhinitis, NC/Nga mice of 3 weeks age were sensitized on 7, 8 and 9week by Ovalbumin (OVA) antigen in intranasal space. Hataedock using CG extract was administered on week 3 in allergic rhinitis-induced group (CGT) after Hataedock treatment. To identify distribution of Interlukin (IL)-4, Cluster of differentiation 40 (CD40), high-affinity IgE receptor ($Fc{\varepsilon}RI$), substance P, Matrix metallopeptidase 9 (MMP-9), Nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, Inducible nitric oxide synthase (iNOS) and Cycloxygenase-2 (COX-2), we used histological examination. CGT significantly inhibited IL-4 and CD40 response compared with ARE. The reduction of Th2 cytokine expression decreased inflammatory mediators such as $Fc{\varepsilon}RI$, substance P, MMP-9, $NF-{\kappa}B$ p65, iNOS and COX-2. Such immunological improvement induced reduction of respiratory epithelial damage and mucin secretion in goblet cell. These results indicate that Hataedock treatment suppresses allergic rhinitis through modulating of Th2 responses and diminishing various inflammatory mediators in nasal mucosal tissue. It might have potential applications for prevention and treatment of allergic rhinitis.

Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor (칼슘 증기에 의한 Ti-48Al-2Cr-2Nb 분말의 산소 저감 및 표면 화학적 상태 분석)

  • Kim, Taeheon;Kwon, Hanjung;Lim, Jae-Won
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

Evaluation of the anti-inflammatory effects of silkworm (Bombyx mori L.) pupal extracts against lipopolysaccharide-induced inflammation in the murine macrophage cell line RAW264.7

  • Kamidi, Rahul;HaeYong, Kweon;Hun-bok, Kim;Ji Hae, Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Silkworm pupal extracts (SPE) were prepared in different solvents (water, 30%, 50%, 70%, and 100% ethanol) and their anti-inflammatory effects were evaluated in the RAW264.7 cell line. The SPE composition was initially evaluated by determining the protein content and performing Fourier transform infrared (FTIR) analysis. The protein content of the different SPE ranged from 6.75-130.93 mg/g of extract. FTIR analysis exhibited distinguishable absorption peaks among the extracts and indicated the presence of lipids, proteins, carbohydrates, and nucleic acid moieties. The levels of released nitric oxide (NO) and interleukin-6 (IL-6) expression in lipopolysaccharide (LPS)-induced RAW264.7 cells were only attenuated by 100% ethanolic SPE to 19.44% and 16.77%, respectively. The other solvent extracts were ineffective. Hence, further studies were conducted with 100% ethanolic SPE from three distinct stages of male and female silkworm pupae belonging to four silkworm varieties (Baegokjam; B, GoldenSilk; G, Juhwangjam; J, and YeonNokjam; Y). The best reduction in NO release and interleukin-1β (IL-1β) expression levels was achieved by the SPE of early female pupae belonging to the Baegokjam variety (32.72%) and those of early female pupae belonging to the Baegokjam and GoldenSilk (59.93%) varieties, respectively. The best reduction in IL-6 expression by 49.70% was achieved by SPE from female pupae of the mid-pupal stage belonging to the Baegokjam variety.

Selective Catalytic Reduction (SCR) Technology Trend for the Removal of Nitrogen Oxide from Ship Flue Gas (선박 배가스 내 질소산화물 제거를 위한 선택적촉매환원법(SCR) 기술동향)

  • Won, Jong Min;Hong, Sung Chang
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.25-40
    • /
    • 2019
  • 전 세계적으로 환경문제를 해결하기 위한 방안으로 환경규제를 강화시키며 특히 다양한 대기오염 물질 중 최근 큰 이슈인 초미세먼지 저감을 위해 전구물질로 알려진 질소산화물을 제어하기 위한 다양한 기술개발이 가속화되고 있다. 특히, 다양한 처리기술 중에 기술적·경제적인 이점을 갖춘 선택적 촉매환원법(selective catalytic reduction, SCR) 기술을 통하여 질소산화물 제거를 위해 암모니아를 환원제로 반응에 참여시켜 인체에 무해한 H2O, N2로 전환하는 기술이 대표적이다. 최근 전 세계적으로 다양한 산업군에서 질소산화물이 배출되고 있으며, 점오염원뿐만이 아니라 비점오염원(mobile sources)에 대한 규제가 강화되고 있다. 디젤엔진이 장착된 선박 배가스 처리장치 내 SCR 기술이 주목을 받고 있으며, NH3-SCR에 사용되는 촉매는 주로 VOx/TiO2, VOx/W/TiO2 촉매가 대표적이다. 한편 선박 디젤엔진에 사용되는 연료에 따라 연소배가스 특성이 다르다. 이러한 연료가 연소됨에 따라 SO2, SO3가 발생되고 환원제인 NH3와 결합하여 황산암모늄염((NH4)2SO4), ABS (ammonium bisulfate, NH4HSO4)과 같은 염을 형성시켜 탈질촉매의 비활성화 문제가 발생된다. 이러한 비활성화 물질이 침적된 탈질촉매를 재활성화 시키기 위하여 열 산화를 통해 재생시키고 있다. 이처럼 선박용 SCR 촉매는 강화되는 배출규제 및 엔진기술의 발달로 저감되는 운전 온도에 대비하여 저온 활성 재생이 가능한 고활성, 고내구성 촉매기술 개발이 필요하다.

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.