DOI QR코드

DOI QR Code

Anti-inflammatory effects of Hataedock with Coptidis Rhizoma and Glycyrrhiza Uralensis on Allergic Rhinitis through Regulating IL-4 Activation

알레르기성 비염에서 황련-감초 하태독법의 IL-4활성 조절을 통한 항염증효과

  • Jung, A Ram (Department of Pediatrics, School of Korean Medicine, Pusan National University)
  • 정아람 (부산대학교 한의학전문대학원 한방소아과학교실)
  • Received : 2019.03.10
  • Accepted : 2019.04.22
  • Published : 2019.04.25

Abstract

The aim of this study is to evaluate the anti-inflammatory effect of Hataedock treatment using Coptidis Rhizome and Glycyrrhiza Uralensis (CG) mixed extract in allergic rhinitis induced NC/Nga mice. We divided NC/Nga mice into 3 groups as follows; allergic rhinitis-induced group after CG Hataedock treatment (CGT, n=10), no treatment group (Ctrl), allergic rhinitis elicited group (ARE). To induce allergic rhinitis, NC/Nga mice of 3 weeks age were sensitized on 7, 8 and 9week by Ovalbumin (OVA) antigen in intranasal space. Hataedock using CG extract was administered on week 3 in allergic rhinitis-induced group (CGT) after Hataedock treatment. To identify distribution of Interlukin (IL)-4, Cluster of differentiation 40 (CD40), high-affinity IgE receptor ($Fc{\varepsilon}RI$), substance P, Matrix metallopeptidase 9 (MMP-9), Nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, Inducible nitric oxide synthase (iNOS) and Cycloxygenase-2 (COX-2), we used histological examination. CGT significantly inhibited IL-4 and CD40 response compared with ARE. The reduction of Th2 cytokine expression decreased inflammatory mediators such as $Fc{\varepsilon}RI$, substance P, MMP-9, $NF-{\kappa}B$ p65, iNOS and COX-2. Such immunological improvement induced reduction of respiratory epithelial damage and mucin secretion in goblet cell. These results indicate that Hataedock treatment suppresses allergic rhinitis through modulating of Th2 responses and diminishing various inflammatory mediators in nasal mucosal tissue. It might have potential applications for prevention and treatment of allergic rhinitis.

Keywords

References

  1. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63(Suppl 86):8-160. https://doi.org/10.1111/j.1398-9995.2007.01620.x
  2. Nathan RA. The burden of allergic rhinitis. Allergy Asthma Proc. 2007;28(1):3-9. https://doi.org/10.2500/aap.2007.28.2934
  3. Lee MJ, Chang GT, Han YJ. A Study on the Growth, Quality of Sleep of Children with Chronic Rhinitis. J Pediatr Korean Med. 2008;22(2):125-39.
  4. Marino-Sanchez F, Valls-Mateus M, de Los Santos G, Plaza AM, Cobeta I, Mullol J. Multimorbidities of Pediatric Allergic Rhinitis. Curr Allergy Asthma Rep. 2019;19(2):13. https://doi.org/10.1007/s11882-019-0843-9
  5. Seth D, Kamat D. Intranasal Steroid Therapy for Allergic Rhinitis. Pediatr Ann. 2019;48(1):e43-e8. https://doi.org/10.3928/19382359-20181212-01
  6. Hur GY, Kim TB, Kim ST, Han MY, Nahm DH, Lee YW. Allergy immunotherapy. Korean J Asthma Allergy Clin Immunol. 2010;30:153-83.
  7. The Korean Academy of Asthma AaCI, editor. Asthma and allergic diseases. Seoul: Yeomungak. 2012:Chapter 4, Immunotherapy;625-35.
  8. Lou H, Fu Y, Wang C, Wang Y, Zhang L. Imbalance between Th1 and Th2 cells in cord blood is influenced by maternal allergic rhinitis and associated with atopic dermatitis during the first two years of life. Chinese journal of otorhinolaryngology head and neck surgery. 2014;49(5):390-4.
  9. Krasnow J, Tollerud D, Naus G, Deloia J. Implantation and early pregnancy: Endometrial Th2 cytokine expression throughout the menstrual cycle and early pregnancy. 1996;11(8):1747-54. https://doi.org/10.1093/oxfordjournals.humrep.a019480
  10. Berger A. Th1 and Th2 responses: what are they? BMJ (Clinical research ed). 2000;321(7258):424. https://doi.org/10.1136/bmj.321.7258.424
  11. Eifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016;46(9):1139-51. https://doi.org/10.1111/cea.12780
  12. Mallol J, Crane J, von Mutius E, Odhiambo J, Keil U, Stewart A. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: a global synthesis. Allergologia et immunopathologia. 2013;41(2):73-85. https://doi.org/10.1016/j.aller.2012.03.001
  13. Kang MY, Jang GT, Kim JH. A study on fetal toxicosis removal therapy. J Pediatr Korean Med. 2003;17(1):29-51.
  14. Jung AR, Ahn SH, Park IS, Park SY, Jeong SI, Cheon JH, et al. Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4. BMC Complement Altern Med. 2016;16(1):416. https://doi.org/10.1186/s12906-016-1394-4
  15. Choi JY AS, Kim KB. Reduction of Allergic Rhinitis by Controlling the Th2 Differentiation of Douchi Hataedock. J Int Korean Med. 2017;38(4):468-78. https://doi.org/10.22246/jikm.2017.38.4.468
  16. CHA HY, Ahn SH, Cheon JH, Park SH, Choi JY, Kim KB. Anti-inflammatory Effects of Hataedock Extracted from Coptidis Rhizoma and Glycyrrhiza Uralensis on Atopic Dermatitis-like Skin Lesions of NC/Nga Mouse. J Int Korean Med. 2015;36(4):486-97.
  17. Ahn SH, Kim KB. Effects of Douchi Hataedock Treatment on Induction of Allergic Rhinitis in Obese Induced NC/Nga Mice. J Pediatr Korean Med. 2018;32(2):1-10. https://doi.org/10.7778/JPKM.2018.32.2.001
  18. Song JH, Ahn SH, Cheon JH, Park SY, Kim HY, Kim KB. Effects of Hataedock with Douchi 2,4-dinitrofluorobenzene-induced Atopic Dermatitis-like Skin Lesion in NC/Nga mice. J Physiol & Pathol Korean Med. 2016;30(2):109-15. https://doi.org/10.15188/kjopp.2016.04.30.2.109
  19. Cha HY, Ahn SH, Cheon JH, Park SY, Kim KB. Hataedock treatment has preventive therapeutic effects for atopic dermatitis through skin barrier protection in Dermatophagoides farinae-induced NC/Nga mice. J Ethnopharmacol. 2017;206:327-36. https://doi.org/10.1016/j.jep.2017.06.001
  20. Kim MY, Kim PH, Jeong MJ. A Research on Mothers' Satisfaction with Ha-Taedok Treatment to Their Children. J Pediatr Korean Med. 2017;31(4):39-48. https://doi.org/10.7778/JPKM.2017.31.4.039
  21. Adkins B, Du RQ. Newborn mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses. Journal of immunology (Baltimore, Md : 1950). 1998;160(9):4217-24.
  22. Lee HM, Choi JH, Choi CS, Hwang SJ, Lee SH. Expression of MMP-9 and TIMP-1 in the Nasal Mucosa of Allergic Rhinitis. Korean J Otolaryngol. 2000;43:604-9.
  23. Zhu R, Liu G, Li W, Wang Z, Chen H, Zhang W. A study of costimulatory molecules in allergic allergic rhinitis patients. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;22(17):780-2, 784.
  24. Saunderson SC, Schuberth PC, Dunn AC, Miller L, Hock BD, MacKay PA, et al. Induction of exosome release in primary B cells stimulated via CD40 and the IL-4 receptor. J Immunol. 2008;180(12):8146-52. https://doi.org/10.4049/jimmunol.180.12.8146
  25. Amin K. The role of mast cells in allergic inflammation. Respir Med. 2012;106(1):9-14. https://doi.org/10.1016/j.rmed.2011.09.007
  26. Zhang RX. The role of substance P, gene regulation and PM2.5 in the pathogenesis of allergic rhinitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;53(10):725-9.
  27. Mori S, Pawankar R, Ozu C, Nonaka M, Yagi T, Okubo K. Expression and Roles of MMP-2, MMP-9, MMP-13, TIMP-1, and TIMP-2 in Allergic Nasal Mucosa. Allergy Asthma Immunol Res. 2012;4(4):231-9. https://doi.org/10.4168/aair.2012.4.4.231
  28. Hanf G, Schierhorn K, Brunnee T, Noga O, Verges D, Kunkel G. Substance P induced histamine release from nasal mucosa of subjects with and without allergic rhinitis. Inflamm Res. 2000;49(10):520-3. https://doi.org/10.1007/s000110050625
  29. Barnes PJ, Adcock IM. NF-kappa B: a pivotal role in asthma and a new target for therapy. Trends Pharmacol Sci. 1997;18(2):46-50. https://doi.org/10.1016/S0165-6147(97)89796-9
  30. Kim ST, Oh SC, Kim CW, Park C, Jang IH, Cha HE, et al. Expression of NF-K B and I-K B in Allergic Rhinitis. Korean J Otorhinolaryngol-Head Neck Surg. 2000;43(11):1191-5.
  31. Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev. 2017;38:98-105. https://doi.org/10.1016/j.cytogfr.2017.11.001
  32. Na HK, Surh YJ. Role of Cyclooxygenase-2 and Its Products in the Regulation of Cell Growth. J of Korean Assoc. 2003;8(4):251-60.
  33. Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):51-60. https://doi.org/10.1049/iet-syb:20060032
  34. Heo J. Donguibogam. Seoul:Yegang publish;2019. p.2976.
  35. Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complementary Altern Med. 2014;2014:289264.
  36. Lin WC, Lin JY. Berberine down-regulates the Th1/Th2 cytokine gene expression ratio in mouse primary splenocytes in the absence or presence of lipopolysaccharide in a preventive manner. Int Immunopharmacol. 2011;11(12):1984-90. https://doi.org/10.1016/j.intimp.2011.08.008
  37. Ding JW, Luo CY, Wang XA, Zhou T, Zheng XX, Zhang ZQ, et al. Glycyrrhizin, a High-Mobility Group Box 1 Inhibitor, Improves Lipid Metabolism and Suppresses Vascular Inflammation in Apolipoprotein E Knockout Mice. J Vasc Res. 2018;55(6):365-77. https://doi.org/10.1159/000495310
  38. Bordbar N, Karimi MH, Amirghofran Z. The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. Cell Immunol. 2012;280(1):44-9. https://doi.org/10.1016/j.cellimm.2012.11.013
  39. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules (Basel, Switzerland). 2015;20(7):13041-54. https://doi.org/10.3390/molecules200713041

Cited by

  1. 국내 한의학 학술지에 발표된 항염증 한약재 및 한약처방 연구동향 - 2015년 이후 발표된 실험논문을 중심으로 - vol.36, pp.1, 2019, https://doi.org/10.6116/kjh.2021.36.1.19.