• Title/Summary/Keyword: oxide cathodes

Search Result 58, Processing Time 0.023 seconds

Oxide Cathodes for Reliable Electron Sources

  • Weon, Byung-Mook;Je, Jung-Ho;Park, Gong-Seog;Koh, Nam-Je;Barratt, David S.;Saito, Tsunenari
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.35-39
    • /
    • 2005
  • In this paper, we investigate the oxide cathodes for the development of reliable electron sources. Poisoning in oxide cathodes is one of the serious problems in achieving reliable electron emission. In particular, early poisoning induces poor life performance as will be demonstrated herein. The survivability of electron emission sources is significantly improved by high doping of high-speed activator. The robust oxide cathodes with 0.17 % Mg operating at about 1,050 K are expected to work for very long times (>100,000 hours). We suggest that this key idea will contribute to solving the basic problems in oxide cathodes such as poisoning or ion bombardment for high power or high frequency applications of electron sources.

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers (VUV 이오나이저용 Ca-Sr-Ba계 산화물 캐소드에 낮은 일함수를 갖는 금속산화물 첨가의 영향)

  • Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.241-251
    • /
    • 2019
  • There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes (금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상)

  • 김혜민;김병수;김용정;조재필;박병우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells

  • Lee, Kyoung Jin;Chung, Jae Hun;Lee, Min Jin;Hwang, Hae Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Advanced Analysis Techniques for Oxide Cathodes

  • Je, Jung-Ho;Kim, In-Woo;Seol, Seung-Kwon;Kwon, Yong-Bum;Cho, Chang-Sik;Weon, Byung-Mook;Park, Gong-Seog;Hwang, Cheol-Ho;Hwu, Yeukuang;Tsai, Wen-Li
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1155-1156
    • /
    • 2003
  • The advanced analysis techniques such as high resolution X-ray absorption spectroscopy (XAS), X-ray scattering, and photoelectron emission microscope (PEEM) using synchrotron radiation are probably able to open new opportunities for improving the performances of oxide cathodes with more clear and deep understanding.

  • PDF

Vacuum thermal evaporated transparent cathodes for organic light-emitting devices (OLED를 위한 진공 열 증착 투명 음극 형성 기술)

  • Moon, Dae-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • Transparent and top emission organic light-emitting device (OLEDs) are the important issues in realizing new display applications such as see-through electronic displays, and flexible displays. The cathode of the transparent and top emission OLEDs should be transparent in the visible light and should not give any damage to the underlying organic layers, in addition to its intrinsic role of injecting electrons into the organic layers. Several authors have investigated the transparent conducting oxide films prepared by sputtering methods. They have introduced the sophisticated sputtering process for reducing the damages. Other groups have developed thermally evaporated transparent cathodes which are believed to be damage free without causing any permanent defect to the organic layers. This review focuses on the vacuum evaporated damage free transparent cathodes.

Electrical Characteristics of Organic Light Emitting Diodes (OLED) using the cathode change (다양한 혼합 전극을 사용한 Organic Light Emitting Diodes(OLEDs)의 전기적 특성)

  • Lee, Hyun-Koo;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.475-476
    • /
    • 2005
  • Efficient electron injection is essential to achieve bright and efficient organic light-emitting diodes (OLEDs). In spite of high work function of Al, it is a common cathode because of its stability. In this paper, to overcome the poor electron injection in OLEDs with Al cathode, OLEDs with various composite cathodes were fabricated and investigated using a conventional OLEDs structure of indium tin oxide ITO/NPB(40 nm)/$Alq_3$(50 nm)/Al. composite cathodes were composed of alkaline materials such as Ca and Li, Al deposition or codeposited with AI. We showed best performance at the device with composite cathode (LiF/Al).

  • PDF