Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.2.07

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells  

Lee, Kyoung Jin (Department Material Science and Engineering, Inha University)
Chung, Jae Hun (Department Material Science and Engineering, Inha University)
Lee, Min Jin (Department Material Science and Engineering, Inha University)
Hwang, Hae Jin (Department Material Science and Engineering, Inha University)
Publication Information
Abstract
In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.
Keywords
$Nd_2NiO_4$; Chromium poisoning; Solid oxide fuel cells; Impedance spectra; Long-term stability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H.-Y. Jeong, K. J. Yoon, J.-H. Lee, Y.-C. Chung, and J. Hong, "Long-Term Stability for Co-Electrolysis of $CO_2$/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells," J. Korean Ceram. Soc., 55 [1] 50-4 (2018).   DOI
2 K. Nakamura, T. Ide, S. Taku, T. Nakajima, M. Shirai, T. Dohkoh, T. Kume, Y. Ikeda, T. Somekawa, T. Kushi, K. Ogasawara, and K. Fujita, "Development of a Highly Efficient SOFC Module Using Two-Stage Stacks and a Fuel Regeneration Process," Fuel Cells, 17 [4] 413-580 (2017).   DOI
3 J. H. Yi and T. S. Kim, "Effects of Fuel Utilization on Performance of SOFC/Gas Turbine Combined Power Generation Systems," J. Mech. Sci. Technol., 31 [6] 3091-100 (2017).   DOI
4 H. An, D. Shin, and H.-I. Ji, "$Pr_2NiO_{4+{\delta}}$ for Cathode in Protonic Ceramic Fuel Cells," J. Korean Ceram. Soc., 55 [4] 358-63 (2018).   DOI
5 B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, and J. Grenier, "Comparative Study of Electrochemical Properties of Mixed Conducting $Ln_2NiO_{4+{\delta}}$ (Ln = La, Pr and Nd) and $La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3-{\delta}}$ as SOFC Cathodes Associated to $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$, $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}}$ and $La_9Sr_1Si_6O_{26.5}$ Electrolytes," Solid State Ionics, 249 17-25 (2013).   DOI
6 C. Sun, R. Hui, and J. Roller, "Cathode Materials for Solid Oxide Fuel Cells: A Review," J. Solid State Electrochem., 14 [7] 1125-44 (2010).   DOI
7 A. A. Samat, M. R. Somalu, A. Muchtar, O. H. Hassan, and N. Osman, "LSC Cathode Prepared by Polymeric Complexation Method for Proton-Conducting SOFC Application," J. Sol-Gel Sci. Technol., 78 [2] 382-93 (2016).   DOI
8 Celikbilek, E. Siebert, D. Jauffrès, C. L. Martin, and E. Djurado, "Influence of Sintering Temperature on Morphology and Electrochemical Performance of LSCF/GDC Composite Films as Efficient Cathode for SOFC," Electrochim. Acta, 246 1248-58 (2017).   DOI
9 L. Dieterle, D. Bach, R. Schneider, H. Stormer, D. Gerthsen, U. Guntow, E. Ivers-Tiffee, A. Weber, C. Peters, and H. Yokokawa, "Structural and Chemical Properties of Nanocrystalline $La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Layers on Yttria-Stabilized Zirconia Analyzed by Transmission Electron Microscopy," J. Mater. Sci., 43 [9] 3135-43 (2008).   DOI
10 D. Heidari, S. Javadpour, and S. H. Chan, "Optimization of BSCF-SDC Composite Air Electrode for Intermediate Temperature Solid Oxide Electrolyzer Cell," Energy Convers. Manage., 136 78-84 (2017).   DOI
11 J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, "Metallic Interconnects for Solid Oxide Fuel Cell," Int. J. Hydrogen Energy, 42 [14] 9219-29 (2017).   DOI
12 J. W. Fergus, "Metallic Interconnects for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 397 [1-2] 271-83 (2005).   DOI
13 S. Geng, Q. Zhao, Y. Li, J. Mu, G. Chen, F. Wang, and S. Zhu, "Sputtered MnCu Metallic Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnects Application," Int. J. Hydrogen Energy, 42 [15] 10298-307 (2017).   DOI
14 E. Kravchenko, K. Zakharchuk, A. Viskup, J. Grins, G. Svensson, V. Pankov, and A. Yaremchenko, "Impact of Oxygen Deficiency on the Electrochemical Performance of $K_2NiF_4-Type (La_{1-x}Sr_x)_2NiO_{4-{\delta}}$ Oxygen Electrodes," Chem-SusChem, 10 [3] 600-11 (2017).
15 J. W. Fergus, "Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 32 [16] 3664-71 (2007).   DOI
16 L. Zhao, S. Amarasinghe, and S. P. Jiang, "Enhanced Chromium Tolerance of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O-{3-{\delta}}$ Electrode of Solid Oxide Fuel Cells by $Gd_{0.1}CeO_{1.95}$ Impregnations," Electrochem. Commun., 37 84-7 (2013).   DOI
17 R. Wang, Z. Sun, U. B. Pal, S. Gopalan, and S. N. Basu, "Mitigation of Chromium Poisoning of Cathodes in Solid Oxide Fuel Cells Employing $CuMn_{1.8}O_4$ Spinel Coating on Metallic Interconnect," J. Power Sources, 376 100-10 (2018).   DOI
18 Z. Ding, R. Guo, W. Guo, Z. Liu, G. Cai, and H. Jiang, "Preparation and Electrochemical Properties of Sr-Doped $K_2NiF_4$-Type Cathode Material $Pr_{1.7}Sr_{0.3}CuO_4$ for ITSOFCs," Fuel Cells, 16 [2] 252-57 (2016).   DOI
19 N. Wu, W. Wang, Y. Zhong, G. Yang, J. Qu, and Z. Shao, "Nickel-Iron Alloy Nanoparticle-Decorated $K_2NiF_4$-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells," ChemElectroChem, 4 [9] 2378-87 (2017).   DOI
20 E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-Stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005).   DOI
21 H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M. E. Brito, and H. Kishimoto, "Thermodynamic and Kinetic Considerations on Degradations in Solid Oxide Fuel Cell Cathodes," J. Alloys Compounds, 452 [1] 41-7 (2008).   DOI
22 N. Hildenbrand, B. A. Boukamp, P. Nammensma, and D. H. A. Blank, "Improved Cathode/Electrolyte Interface of SOFC," Solid State Ionics, 192 [1] 12-5 (2011).   DOI
23 M. Yang, E. Bucher, and W. Sitte, "Effects of Chromium Poisoning on the Long-Term Oxygen Exchange Kinetics of the Solid Oxide Fuel Cell Cathode Materials $La_{0.6}Sr_{0.4}CoO_3$ and $Nd_2NiO_4$," J. Power Sources, 196 [17] 7313-17 (2011).   DOI
24 E. Park, S. Taniguchi, T. Daio, J. Chou, and K. Sasaki, "Comparison of Chromium Poisoning among Solid Oxide Fuel Cell Cathode Materials," Solid State Ionics, 262 421-27 (2014).   DOI
25 J. A. Schuler, H. Lbbe, and A. H.-Wyser, "Nd-Nickelate Solid Oxide Fuel Cell Cathode Sensitivity to Cr and Si Contamination," J. Power Sources, 213 223-28 (2012).   DOI
26 Y. Toyosumi, H. Ishikawa, and K. Ishikawa, "Structural Phase Transition of $Nd_2NiO_{4+{\delta}}$ (0.106 $\leq$ ${\delta}$ $\leq$ 0.224)," J. Alloys Compounds, 408-412 1200-4 (2006).   DOI
27 J. Nielsen and J. Hjelm, "Impedance of SOFC Electrodes: A Review and a Comprehensive Case Study on the Impedance of LSM:YSZ Cathodes," Electrochim. Acta, 115 31-45 (2014).   DOI
28 P. Aguiar, C. S. Adjiman, and N. P. Brandon, "Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance," J. Power Sources, 138 [1-2] 120-36 (2004).   DOI
29 F. Mauvy, C. Lalanne, J. Bassat, J. Grenier, H. Zhao, L. Huo, and P. Stevens, "Electrode Properties of $Ln_2NiO_{4+{\delta}}$ (Ln=La,Nd,Pr) AC Impedance and DC Polarization Studies," J. Electrochem. Soc., 153 A1547-53 (2006).   DOI
30 I. B. Sharma and D. Singh, "Solid State Chemistry of Ruddlesden-Popper Type Complex Oxides," Bull. Mater. Sci., 21 [5] 363-74 (1998).   DOI
31 J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, J. L. Martinez, F. Fernandez, and R. Saez-Puche, "Structural Phase Transitions and Three-Dimensional Magnetic Ordering in the $Nd_2NiO_4$ Oxide," Europhys. Lett., 11 [3] 261-8 (1990).   DOI
32 K. Ishikawa, K. Metoki, and H. Miyamoto, "Orthorhombic-Orthorhombic Phase Transitions in $Nd_2NiO_{4+{\delta}}$ (0.067 $\leq$ ${\delta}$ $\leq$ 0.224)," J. Solid State Chem., 182 [8] 2096-103 (2009).   DOI
33 L. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger- Wilckens, "Worldwide SOFC Technology Overview and Benchmark," Int. J. Appl. Ceram. Technol., 2 [6] 482-92 (2005).   DOI