Browse > Article

Oxide Cathodes for Reliable Electron Sources  

Weon, Byung-Mook (Biomedical Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Je, Jung-Ho (Biomedical Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Park, Gong-Seog (LG. Philips Displays)
Koh, Nam-Je (LG. Philips Displays)
Barratt, David S. (LG. Philips Displays, Philips Road)
Saito, Tsunenari (Tokyo Cathode Laboratory)
Publication Information
Abstract
In this paper, we investigate the oxide cathodes for the development of reliable electron sources. Poisoning in oxide cathodes is one of the serious problems in achieving reliable electron emission. In particular, early poisoning induces poor life performance as will be demonstrated herein. The survivability of electron emission sources is significantly improved by high doping of high-speed activator. The robust oxide cathodes with 0.17 % Mg operating at about 1,050 K are expected to work for very long times (>100,000 hours). We suggest that this key idea will contribute to solving the basic problems in oxide cathodes such as poisoning or ion bombardment for high power or high frequency applications of electron sources.
Keywords
oxide cathodes; electron sources; poisoning; robustness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Gold and G. S. Nusinovich, Rev. Sci. Instrum. 68, 3945 (1997)
2 W. F. Brinkman and D. V. Lang, Rev. Mod. Phys. 71, S480 (1999)
3 A. K. Bhattacharya, J. Appl. Phys. 65, 4595 (1989)
4 L. M. Awasthi, G. Ravi, V. P. Anitha, P. K. Srivastava, and S. K. Mattoo, Plasma Sources Sci. Technol. 12, 158 (2003)
5 L. M. Field, Rev. Mod. Phys. 18, 353 (1946)
6 S. Wagener, Proc. Phys. Soc. B 67, 369 (1954)
7 G. Gaertner, D. Raasch, D. Barratt, and S. Jenkins, Appl. Surf. Sci. 215, 72 (2003)
8 A. D. White, J. Appl. Phys. 20, 856 (1949)   DOI
9 B. M. Weon, A. van Dam, G. S. Park, C. H. Hwang, S. D. Han, I. W. Kim, S. K. Seol, Y. B. Kwon, C. S. Cho, J. H. Je, Y. Hwu, W. L. Tsai, and P. Ruterana, J. Vac. Sci. Technol. B 21, 2184 (2003)
10 K. C. Mishra, R. Garner, and P. C. Schmidt, J. Appl. Phys. 95, 3069 (2004)
11 B. M. Weon, J. L. Lee, and J. H. Je, J. Appl. Phys. 98, 096101 (2005)
12 M. Starodubtsev and C. Krafft, Phys. Rev. Lett. 83, 1335 (1999)
13 R. Umstattd, T. Pi, N. Luhmann Jr., G. Scheitrum, G. Caryotakis, and G. Miram, AIP Conf. Proc. 474, 280 (1999)
14 S. Itoh, M. Yokoyama, and K. Morimoto, J. Vac. Sci. Technol. A 5, 3430 (1987)   DOI
15 H. Nakanishi, in IDW'01 Digest (2001), p. 695
16 R. W. Peterson, D. E. Anderson, and W. C. Shepherd, J. Appl. Phys. 28, 22 (1956)
17 R. J. Soukup, J. Appl. Phys. 48, 1098 (1977)
18 W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)
19 E. S. Rittner, Philips Res. Rep. 8, 184 (1953)
20 T. Aida, S. Taguchi, S. Yamamoto, and H. Fukushima, J. Appl. Phys. 53, 9029 (1982)
21 N. A. Surplice, J. Phys. D: Appl. Phys. 1, 1245 (1968)
22 A. Wehnelt, Ann. Phys. 14, 425 (1904)
23 P. Wargo and W. G. Shepherd, Phys. Rev. 106, 694 (1957)
24 A. A. Shepherd, Brit. J. Appl. Phys. 4, 70 (1953)
25 B. M. Weon and J. H. Je, Appl. Surf. Sci. 251, 59 (2005)
26 M. Sedlacek, Electron Physics of Vacuum and Gaseous Devices (1996)
27 B. M. Weon and J. H. Je, J. Appl. Phys. 97, 036101 (2005)
28 D. Leneman, W. Gekelman, and J. Maggs Jr., Phys. Rev. Lett. 82, 2673 (1999)
29 N. S. Ginzburg, A. A. Kaminsky, A. K. Kaminsky, N. Y. Peskov, S. N. Sedykh, A. P. Sergeev, and A. S. Sergeev, Phys. Rev. Lett. 84, 3574 (1999)
30 B. T. Grenfell, O. N. Bjornstad, and J. Kappey, Nature 414, 716 (2001)
31 H. Suzuki, in Advances in Imaging and Electron Physics, 105 (1999)
32 H. Friedenstein, S. L. Martin, and G. L. Munday, Rep. Prog. Phys. 11, 298 (1946)
33 G. F. Fussmann, S. P. Ellner, K. W. Shertzer, and N. G. Hairston, Science 290, 1358 (2000)