Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.4.241

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers  

Park, Seung-Kyu (Department of Advanced Materials and Chemical Engineering, Hannam University)
Lee, Jonghyuk (Department of Advanced Materials and Chemical Engineering, Hannam University)
Kim, Ran Hee (Department of Advanced Materials and Chemical Engineering, Hannam University)
Jung, Juhyoung (Department of Advanced Materials and Chemical Engineering, Hannam University)
Han, Wan Gyu (Department of Advanced Materials and Chemical Engineering, Hannam University)
Lee, Soo Huan (Department of Advanced Materials and Chemical Engineering, Hannam University)
Jeon, Sung Woo (Department of Advanced Materials and Chemical Engineering, Hannam University)
Kim, Dae Jun (VSI Co. Ltd.)
Kim, Do-Yun (VSI Co. Ltd.)
Lee, Kwang-Sup (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Korean Journal of Materials Research / v.29, no.4, 2019 , pp. 241-251 More about this Journal
Abstract
There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.
Keywords
ionizer; thermionic cathode; vacuum ultraviolet; metal oxides; work function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. H. Lee, D. S. Choi, Y. C. Jung and S. M. Kim, J. Korean Soc. Saf., 29, 34 (2014).
2 J. S. Chang and A. A. Berezin, J. Electrostat, 51-52, 64 (2001).   DOI
3 Q. Liu and D. R. Chen, J. Aerosol Sci., 76, 148 (2014).   DOI
4 I. G. Herrmann and P. S. Wagener, The oxide coated cathode, p.1, Chapman and Hall Ltd., London, UK (1951).
5 I. Langmuir, Phys. Rev., 22, 357 (1923).   DOI
6 L. W. Turner, Electronics Engineer's Reference Book, 4th ed., p.7, Newnes-Butterworth, London, England (1976).
7 I. G. Herrmann and P. S. Wagener, The oxide coated cathode, p.218, Chapman and Hall Ltd., London, UK, (1951).
8 R. F. Davis, $BaO-CaO-Al_2O_3$ Glass compositions, US Patent 3,852,079 (1974).
9 L. Dong, J. Wang, W. Liu, C. Li, J. Zhang, Y. Yang and F. Zhou, Mater. Lett., 146, 47 (2015).   DOI
10 S. Qi, X. Wang, J. Luo, M. Hu, Q. Zhao, Y. Li and Q. Zhang, IEEE International Vacuum Electronics Conference (IVEC), p.1, Beijing, China (2015),
11 H. Friedenstein, S. L. Martin and G. L. Munday, Rep. Prog. Phys., 11, 298 (1946).   DOI
12 B. M. Weon, J. H. Je, G. S. Park, N. J. Koh, D. S. Barratt and T. Saito, J. Inf. Disp., 6, 35 (2005).   DOI
13 H. Inaba, T. Ohmi, T. Yoshida and T. Okada, J. Electrostat, 33, 15 (1994).   DOI
14 K. Newbury and F. Lemery, J. Opt. Soc. Am., 21, 276 (1931).   DOI
15 S.-K. Park, J. Lee, S. Jeon, R. H. Kim, J. Jung, D.-J. Kim, D.-Y. Kim and K.-S. Lee, Mol. Cryst. Liq. Cryst., to be appeared 2019.
16 H. Yang, H. Zhao, H. Dong, W. Yang and D. Chen, Mater. Res. Bull., 44, 1148 (2009).   DOI
17 Y.-J. Cho, H.-C. Yang, H.-C. Eun, E.-H. Kim and I.-T. Kim, J. Nucl. Sci. Technol., 43, 1280 (2006) .   DOI
18 S. H. Chou, J. Voss, A. Vojvodic, R. T. Howe and F. A.-Pedersen, J. Phys. Chem. C, 118, 11303 (2014).   DOI