DOI QR코드

DOI QR Code

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo (Department of Advanced Materials Engineering, Graduate School Kyonggi University) ;
  • Yong Joon Park (Department of Advanced Materials Engineering, Graduate School Kyonggi University)
  • Received : 2023.02.07
  • Accepted : 2023.03.03
  • Published : 2023.08.31

Abstract

Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT, No. 2020R1A2C1008370). This work was also supported by the Kyonggi University Graduate Research Assistantship 2022.

References

  1. J. H. Yang, S. J. Hwang, S. K. Chun, and K. J. Kim, J. Electrochem. Sci. Technol., 2022, 13(2), 208-212. https://doi.org/10.33961/jecst.2021.00899
  2. S. Akhtar, W. Lee, M. Kim, M. S. Park, and W. S. Yoon, J. Electrochem. Sci. Technol., 2021, 12(1), 1-20. https://doi.org/10.33961/jecst.2020.01564
  3. D. W. Kim, D. Park, C. H. Ko, K. Shin, and Y. S. Lee, J. Electrochem. Sci. Technol., 2021, 12(2), 237-245. https://doi.org/10.33961/jecst.2020.01599
  4. K. Jung, S. H. Oh, and T. Yim, J. Electrochem. Sci. Technol., 2021, 12(1), 67-73. https://doi.org/10.33961/jecst.2020.00850
  5. H. Kim, D. I. Kim, and W. S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(3), 398-406. https://doi.org/10.33961/jecst.2022.00122
  6. D. H. Yoon and Y. J. Park, Appl. Energy, 2022, 326, 119991.
  7. J. U. Cho, R. Rajagopal, D. H. Yoon, Y. J. Park, and K. S. Ryu, Chem. Eng. J., 2023, 452, 138955.
  8. J. S. Lee and Y. J. Park, ACS Appl. Mater. Interfaces, 2021, 13(32), 38333-38345. https://doi.org/10.1021/acsami.1c10294
  9. K. Chai, J. Zhang, Q. Li, D. Wong, L. Zheng, C. Schulz, M. Bartkowiak, D. Smirnov, and X. Liu, Small, 2022, 18(18), 2201014.
  10. J. Kim, S. Kwak, H. Q. Pham, H. Jo, D. M. Jeon, A. R. Yang, and S. W. Song, J. Electrochem. Sci. Technol., 2022, 13(2), 269-278. https://doi.org/10.33961/jecst.2021.01165
  11. H. G. Kim and Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(4), 377-386. https://doi.org/10.33961/jecst.2021.00052
  12. M. J. Seong and T. Yim, J. Electrochem. Sci. Technol., 2021, 12(2), 279-284. https://doi.org/10.33961/jecst.2020.01494
  13. H. Kobayashi, M. Hibino, T. Makimoto, Y. Ogasawara, K. Yamaguchi, T. Kudo, S. ichi Okuoka, H. Ono, K. Yonehara, Y. Sumida, and N. Mizuno, J. Power Sources, 2017, 340, 365-372. https://doi.org/10.1016/j.jpowsour.2016.11.050
  14. S. Okuoka, Y. Ogasawara, Y. Suga, M. Hibino, T. Kudo, H. Ono, K. Yonehara, Y. Sumida, Y. Yamada, A. Yamada, M. Oshima, E. Tochigi, N. Shibata, Y. Ikuhara, and N. Mizuno, Sci. Rep., 2014, 4, 5684.
  15. S. Y. Lee and Y. J. Park, Sci. Rep., 2019, 9, 13180.
  16. K. Harada, M. Hibino, H. Kobayashi, Y. Ogasawara, S. Okuoka, K. Yonehara, H. Ono, Y. Sumida, K. Yamaguchi, T. Kudo, and N. Mizuno, J. Power Sources, 2016, 322, 49-56. https://doi.org/10.1016/j.jpowsour.2016.04.141
  17. B. G. Lee and Y. J. Park, Nanoscale Res. Lett., 2019, 14, 378.
  18. H. Kobayashi, M. Hibino, Y. Ogasawara, K. Yamaguchi, T. Kudo, S. I. Okuoka, K. Yonehara, H. Ono, Y. Sumida, M. Oshima, and N. Mizuno, J. Power Sources, 2016, 306, 567-572. https://doi.org/10.1016/j.jpowsour.2015.12.041
  19. Y. Qiao, H. Deng, P. He and H. Zhou, Joule, 2020, 4(7), 1445-1458. https://doi.org/10.1016/j.joule.2020.05.012
  20. Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu, and J. Li, Nat. Energy, 2016, 1, 16111.
  21. Y. Qiao, K. Jiang, H. Deng, and H. Zhou, Nat. Catal., 2019, 2, 1035-1044. https://doi.org/10.1038/s41929-019-0362-z
  22. D. H. Yoon and Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(1), 126-136. https://doi.org/10.33961/jecst.2020.01361
  23. P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, and D. Chu, J. Energy Chem., 2020, 43, 220-235. https://doi.org/10.1016/j.jechem.2019.08.022
  24. J. Y. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2022, 13(3), 407-415. https://doi.org/10.33961/jecst.2022.00444
  25. G. Kaur and B. D. Gates, J. Electrochem. Soc., 2022, 169, 043504.
  26. S. Y. Lee and Y. J. Park, ACS Omega, 2020, 5(7), 3579-3587. https://doi.org/10.1021/acsomega.9b03932
  27. B. G. Lee and Y. J. Park, Sci. Rep., 2020, 10, 13498.
  28. H. Kobayashi, M. Hibino, Y. Kubota, Y. Ogasawara, K. Yamaguchi, T. Kudo, S. Okuoka, H. Ono, K. Yonehara, Y. Sumida, and N. Mizuno, J. Electrochem. Soc., 2017, 164, A750.
  29. L. Chen, K. Wang, X. Xie, and J. Xie, J. Power Sources, 2007, 174(2), 538-543. https://doi.org/10.1016/j.jpowsour.2007.06.149
  30. Y. Wang, S. Nakamura, K. Tasaki, and P. B. Balbuena, J. Am. Chem. Soc., 2002, 124(16), 4408-4421. https://doi.org/10.1021/ja017073i
  31. G.-Y. Kim, R. Petibon, and J. R. Dahn, J. Electrochem. Soc., 2014, 161, A506.
  32. Y. S. Kim, T. H. Kim, H. Lee, and H. K. Song, Energy Environ. Sci., 2011, 4, 4038-4045. https://doi.org/10.1039/c1ee01272j
  33. Y.-S. Kim, H. Lee, and H.-K. Song, ACS Appl. Mater. Interfaces, 2014, 6(11), 8913-8920. https://doi.org/10.1021/am501671p
  34. T. Li, J. Lin, L. Xing, Y. Zhong, H. Chai, W. Yang, J. Li, W. Fan, J. Zhao, and W. Li, J. Phys. Chem. Lett., 2022, 13(37), 8801-8807. https://doi.org/10.1021/acs.jpclett.2c02032
  35. L. Wang, Y. Ma, Q. Li, Z. Zhou, X. Cheng, P. Zuo, C. Du, Y. Gao, and G. Yin, J. Power Sources, 2017, 361, 227-236. https://doi.org/10.1016/j.jpowsour.2017.06.075
  36. K. Kim, Y. Kim, S. Park, H. J. Yang, S. J. Park, K. Shin, J.-J. Woo, S. Kim, S. Y. Hong, and N.-S. Choi, J. Power Sources, 2018, 396, 276-287. https://doi.org/10.1016/j.jpowsour.2018.06.046
  37. H. J. Im and Y. J. Park, Sci. Rep., 2022, 12(1), 527.
  38. K. Edstrom, T. Gustafsson, and J. O. Thomas, Electrochim. Acta, 2004, 50(2-3), 397-403. https://doi.org/10.1016/j.electacta.2004.03.049