• 제목/요약/키워드: oxidation layer

검색결과 1,134건 처리시간 0.024초

플라즈마 산질화처리된 SCM435강의 표면경화층의 미세조직과 특성 (The Characteristics of the Oxide Layer Produced on the Plasma Nitrocarburized Compound Layer of SCM435 Steel by Plasma Oxidation)

  • 전은갑;박익민;이인섭
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.265-269
    • /
    • 2004
  • Plasma nitrocarburising and post oxidation were performed on SCM435 steel by a pulsed plasma ion nitriding system. Plasma oxidation resulted in the formation of a very thin ferritic oxide layer 1-2 $\mu\textrm{m}$ thick on top of a 15~25 $\mu\textrm{m}$ $\varepsilon$-F $e_{2-3}$(N,C) nitrocarburized compound layer. The growth rate of oxide layer increased with the treatment temperature and time. However, the oxide layer was easily spalled from the compound layer either for both oxidation temperatures above $450^{\circ}C$, or for oxidation time more than 2 hrs at oxidation temperature $400^{\circ}C$. It was confirmed that the relative amount of $Fe_2$$O_3$, compared with $e_3$$O_4$, increased rapidly with the oxidation temperature. The amounts of ${\gamma}$'-$Fe_4$(N,C) and $\theta$-$Fe_3$C, generated from dissociation from $\varepsilon$-$Fe_{2-3}$ /(N,C) phase during $O_2$ plasma sputtering, were also increased with the oxidation temperature.e.

메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동 (Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices)

  • 박상식
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

MOS 소자용 Silicon Carbide의 열산화막 생성 및 특징 (Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices)

  • 오경영;이계홍;이계홍;장성주
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.327-333
    • /
    • 2002
  • In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.

GaN/Sapphire(0001) 기판위에 증착한 epitaxial Ni(111) 박막의 산화 과정 (Oxidation Process of Epitaxial Ni(111) Thin Films Deposited on GaN/Sapphire(0001) Substrates)

  • 서선희;강현철
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.354-360
    • /
    • 2009
  • This paper reports the oxidation mechanism of epitaxial Ni thin films grown on GaN/sapphire(0001) substrates, investigated by real-time x-ray diffraction and scanning electron microscopy. At the initial stage of oxidation process, a thin NiO layer with a thickness of ${\sim}50\;{\AA}$ was formed on top of the Ni films. The growth of such NiO layer was saturated and then served as a passive oxide layer for the further oxidation process. For the second oxidation stage, host Ni atoms diffused out to the surfaces of initially formed NiO layer through the defects running vertically to form NiO grains, while the sites that were occupied by host Ni, became voids. The crystallographic properties of resultant NiO films, such as grain size and mosaic distribution, rely highly on the oxidation temperatures.

Ti-Al-N코팅층의 내산화 특성에 관한 연구 (Study on the Oxidation Resistance of Ti-Al-N Coating Layer)

  • 김충완;김광호
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.512-518
    • /
    • 1997
  • The high temperature oxidation behaviors of titanium nitride films prepared by PACVD technique were studied in the temperature range of from 50$0^{\circ}C$ to 80$0^{\circ}C$ under air atmosphere. Ti0.88Al0.12N film, which showed the excellent microhardness from the previous work, was investigated on its oxidation resistance compared with pure TiN film. Ti-Al-N film showed superior oxidation resistance up to $700^{\circ}C$, whereas TiN film was fast oxidized into rutile TiO2 crystallites from at 50$0^{\circ}C$. It was found that an amorphous layer having AlxTiyOz formula was formed on the surface region due to outward diffusion of Al ions at the initial stage of oxidation. The amorphous oxide layer played a role as a barrier against oxygen diffusion, protected the remained nitride layer from further oxidation, and thus, resulted in the high oxidation resistive characteristics of Ti-Al-N film.

  • PDF

금형공구강의 후산화와 침류질화에 의해 형성된 복합층의 조직과 특성에 관한 연구 (The Microstructures and Properties of Duplex Layer on the Tool Steel Formed by Post-oxidation and Sulfnitriding)

  • 이재식;김한군;유용주
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.81-88
    • /
    • 2001
  • The effects of post-oxidation and sulfnitriding treatments on the phase transformation in the nitrided case of tool steels have been studied. Dense and compact $Fe_3O_4$ layer was formed at the outer surface of nitride compound layer by post-oxidation treatment and multi layer of iron sulfide(FeS) was formed in the compound layer by sulfnitriding treatment. The surface hardness decreased because of formation of the soft oxide or sulfide at the nitride surface. Diffusion layer of nitride case was not affected by post-oxidation treatment or sulfnitriding treatment of nitrided alloy tool steels.

  • PDF

플라즈마 산질화처리 조건이 강의 내식성에 미치는 영향 (The Characteristics of Corrosion Resistance during Plasma Oxinitrocarburising for Carbon Steel)

  • 이구현;남기석;이상로;조효석;신평우;박율민
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.103-109
    • /
    • 2001
  • Plasma nitrocarburising and post oxidation were performed on SM45C steel using a plasma nitriding unit. Nitrocarburising was carried out with various methane gas compositions with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% oxygen gas atmosphere with 4 torr at different temperatures for various times. It was found that the compound layer produced by plasma nitrocarburising consisted of predominantly ${\varepsilon}-Fe_{2-3}(N,C)$ and a small proportion of ${\gamma}-Fe_4(N,C)$. With increasing methane content in the gas mixture, ${\varepsilon}$ phase compound layer was favoured. In addition, when the methane content was further increased, cementite was observed in the compound layer. The very thin oxide layer on top of the compound layer was obtained by post oxidation. The formation of Oxide phase was initially started from the magnetite($Fe_3O_4$) and with increasing oxidation time, the oxide phase was increased. With increasing oxidation temperature, oxide phase was increased. However the oxide layer was split from the compound layer at high temperature. Corrosion resistance was slightly influenced by oxidation times and temperatures.

  • PDF

산화에 의한 중공형 구리 산화물 나노입자 제조 (Synthesis of Hollow Cu Oxide Nanoparticles by Oxidation)

  • 이정구;백연경;정국채;최철진
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.950-955
    • /
    • 2011
  • In the present study, the formation of hollow Cu oxide nanoparticles through the oxidation process at temperatures from 200 to $300^{\circ}C$ has been studied by transmission electron microscopy with Cu nanoparticles produced by the plasma arc discharge method. The Cu nanoparticles had a thin oxide layer on the surface at room temperature and the thickness of this oxide layer increased during oxidation in atmosphere at $200-300^{\circ}C$ However, the oxide layer consisted of $Cu_2O$ and CuO after oxidation at $200^{\circ}C$ whereas this layer was comprised of only CuO after oxidation at $300^{\circ}C$ On the other hand, hollow Cu oxide nanoparticles are obtained as a result of vacancy aggregation in the oxidation processes, resulting from the rapid outward diffusion of metal ions through the oxide layer during the oxidation process.

양극산화에 의한 다공성 알루미나 막의 기체투과 특성 (Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation)

  • 함영민
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF