Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.9.718

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices  

Park, Sang-Shik (Dept. of Materials Sceince and Engineering, Sangju Mational University)
Publication Information
Korean Journal of Materials Research / v.12, no.9, 2002 , pp. 718-723 More about this Journal
Abstract
$Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.
Keywords
${Ti_{1-x}}{Al_x}N$ thin film; barrier layer; oxidation; sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.S. Chun, 1. Petrov and J.E. Greene, J. Appl. Phys., 86 (7) 3633 (1999)   DOI
2 N. Yokoyama, K. Hinode and Y. Homma, J. Electrochem. Soc., 138,190 (1991)   DOI
3 S. Onishi, K. Ishihara, K. Ito, J. Kudo and K. Sakiyama, IEEE IEDM, 94, 843 (1994)   DOI
4 J. Kourtev and R. Pascova, Vacuum, 47(10), 1197 (1996)   DOI   ScienceOn
5 J. Laimer, H. Stori and P. Rodhammer, Thin Solid Films, 191 , 77 (1990)   DOI   ScienceOn
6 M. Zhou, Y. Makino, M. Nose and K. Nogi, Thin Solid Films, 339, 203 (1999)   DOI   ScienceOn
7 R.I. Hedge, R.W. Fiordalice, E.O. Travis, and P. J. Tobin, J. Vac. Sci. Technol., B11,1287 (1993)   DOI   ScienceOn
8 O. Knotek, W.D. Munz and T. Leyendecker, J. Vac. Sci. Technol., A5(4), 2173 (1987)   DOI
9 U. Wahlstr m, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, and J.E. Greene, Thin Solid Films, 235, 62, (1993)   DOI   ScienceOn
10 Y. Tanaka, J. Vac. Sci. Technol., A10, 1749 (1992)   DOI
11 O. Knotek, M. Bohmer and T. Leyendecker, J. Vac. Sci. Technol., A4 (6), 2695 (1986)   DOI
12 E. Vancoille, J.P. Celis and J.R. Roos, Thin Solid Films, 224, 168 (1993)   DOI   ScienceOn
13 M. Wittmer, J. Noser and H. Melchior, J. Appl. Phys., 52 (11),6659 (1981)   DOI   ScienceOn
14 D. Mclntyre, J.E. Greene, G. Hakansson, J. E. Sundgren and W. D. Munz, J. Appl. Phys., 67 (3), 1542 (1990)   DOI
15 M.C. Hugon, J.M. Desvignes, B. Agius, to. Vickridge, D.J. Kim and A.I. Kingon, Nucl. Instr. and Meth., B161-163,578 (2000)   DOI   ScienceOn
16 J.S. Schuster and J. Bauer, J. Solid State Chem., 53, 260 (1984)   DOI   ScienceOn
17 T. Ikeda and H. Satoh, Thin Solid Films, 195, 99 (1991)   DOI   ScienceOn
18 K.H. Kim and S.H. Lee, Thin Solid Films, 283, 165 (1996)   DOI   ScienceOn
19 S.H. Lee, B.J. Kim, H.H. Kim and J.J. Lee, J. Appl, Phys., 80 (3), 1469 (1996)   DOI   ScienceOn
20 S. Hofmann, Thin Solid Films, 193-194, 648 (1990)   DOI   ScienceOn
21 C. Carney and D. Durham, J. Vac. Sci. Technol., A 17, 2850 (1999)   DOI