Browse > Article

Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials  

Kim, Dongwoo (School of Mat. Sci. and Eng. Hongik University)
Kim, Heesan (School of Mat. Sci. and Eng. Hongik University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.10, 2008 , pp. 652-661 More about this Journal
Abstract
Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.
Keywords
oxide layer; EPR test; auger electron spectroscopy; crevice corrosion; chromium-depleted layer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 T. Ujiro, M. Kitazawa, and F. Togashi, Materials Performance 33, 49 (1994).
2 T. Kawasaki, T. Ujiro, S. Owada, and S. Kakihara, Application of Stainless Steel'92 (eds. H. Nordberg and J. Bjorklund), p.725, ASM International, Stockholm, Sweden (1992).
3 R.R. Gaugh, 5th Automotive Corrosion and Prevention Conf., No. 912294, p.195, Society of Automotive Engineers, Dearborn, MI (1991).
4 D.-H. Shin, J.-J. Shim, Y.-S. Choi and J.-G. Kim, J. Kor. Inst. Met. & Mater. 42. 1021 (2004).
5 Y. Ionue and M. Kikuchi, Nippon Steel Tech. Rep. 88, 62 (2003).
6 Y.-H. Kim, S.-H. Park, and Y.-D. Lee, Stainless Steel World 99 Conf., No. SSW99-064, p.195, Hague, The Netherlands (1999).
7 POSCO, POSCO Internal Standards (2006).
8 M. Kitazawa, et. al., Zairy&Omacr 6, 740 (1993).
9 C.S. Brossia and K.L. Martin, CORROSION 98, No. 542, NACE, Huston, TX (1998).
10 J. B. Lee, Corrosion 42,106 (1986).   DOI   ScienceOn
11 H. Kim and Y.-D. Lee, Corrosion 57, 547 (2001).   DOI   ScienceOn
12 L. Bednar and R.A. Edwards, 6th Automotive Corrosion and Prevention Conf., No. 932345, p.195, Society of Automotive Engineers, Dearborn, MI (1993).
13 J. B. Lee, Proceedings of an International Symposium Honoring Professor H.H. Uhlig on his birthday; Corrosion and Protection, p.201, Electrochem. Soc., Corr. Div., Denver, CO. (1981).
14 Y. Tarutani and T. Hashizume, CORROSION 98, No. 386, NACE, Huston, TX (1995).
15 JASO (Japanese Automobile Standards Organization), M 611-92, Society of Automotive Engineers in Japan, Tokyo, Japan (1992).
16 A. Miyazaki, J. Hirasawa, and S. Satoh, Kawasaki Steel Tech. Rep. 43, 21 (2000).
17 General Motors Co., GM 9540P (1997).
18 S. Frangini and A. Mignone, Corrosion 48, 715 (1992).   DOI
19 M. Sano, N. Kubota, K. Masuhara, K. Yamayoshi, and H. Fukumoto, SAE Technical Paper Series, No. 850465, p. 3.534, Society of Automotive Engineers, Warrendale, Penn. (1985).
20 E. Sato, S. Ito, R. Matsuhashi, and H. Abo, JSAE Review 12, 58 (1991).
21 T. Hashizume, et. al., CAMP-ISIJ 5, 1941 (1992).
22 D. -H. Shin, J. -J. Shin, Y. -S, Choi and J. -G. Kim, J. Kor. Inst. Met. & Mater. 42. 1021 (2004).
23 T. Utsunomiya and T. Adachi, Nisshin Steel Tech. Rep. 68, 49 (1993).
24 E. Sato, R. Matsuhashi, S. Ito, and H. Abo, Transactions of JSAE 22, 35 (1991).
25 J. Maki, T. Omori, K. Asakawa, S. Higuchi, and N. Okada, Nippon Steel Tech. Rep. 361, 53 (1996).
26 E. Sato, et. al., CAMP-ISIJ, 4, 1827 (1991).
27 E. Sato and T. Tanoue, Nippon Steel Tech. Rep. 64, 13 (1995).
28 A. Sabata, C.S. Brossia, and M. Behling, CORROSION 98, No. 549, NACE, Huston, TX (1998).
29 H. Kim, POSCO Tech. Rep., No.19990009, p.218, Pohang, Korea (1999).
30 Y. Tarutani et. al., CAMP-ISIJ 4, 1831(1991).
31 T. Ujiro, M. Kitazawa, and S. Satoh, Zairy & Omacr 45, 1192 (1996).
32 T. Utsunomiya, et. al., CAMP-ISIJ 4, 1823 (1991).