Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향

  • Kim, Dongwoo (School of Mat. Sci. and Eng. Hongik University) ;
  • Kim, Heesan (School of Mat. Sci. and Eng. Hongik University)
  • 김동우 (홍익대학교 재료공학부) ;
  • 김희산 (홍익대학교 재료공학부)
  • Received : 2008.07.25
  • Published : 2008.10.25

Abstract

Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

Keywords

Acknowledgement

Supported by : 포스코

References

  1. E. Sato and T. Tanoue, Nippon Steel Tech. Rep. 64, 13 (1995).
  2. T. Ujiro, M. Kitazawa, and S. Satoh, Zairy & Omacr 45, 1192 (1996).
  3. A. Miyazaki, J. Hirasawa, and S. Satoh, Kawasaki Steel Tech. Rep. 43, 21 (2000).
  4. M. Sano, N. Kubota, K. Masuhara, K. Yamayoshi, and H. Fukumoto, SAE Technical Paper Series, No. 850465, p. 3.534, Society of Automotive Engineers, Warrendale, Penn. (1985).
  5. Y. Tarutani et. al., CAMP-ISIJ 4, 1831(1991).
  6. T. Utsunomiya and T. Adachi, Nisshin Steel Tech. Rep. 68, 49 (1993).
  7. E. Sato, R. Matsuhashi, S. Ito, and H. Abo, Transactions of JSAE 22, 35 (1991).
  8. T. Ujiro, M. Kitazawa, and F. Togashi, Materials Performance 33, 49 (1994).
  9. J. Maki, T. Omori, K. Asakawa, S. Higuchi, and N. Okada, Nippon Steel Tech. Rep. 361, 53 (1996).
  10. L. Bednar and R.A. Edwards, 6th Automotive Corrosion and Prevention Conf., No. 932345, p.195, Society of Automotive Engineers, Dearborn, MI (1993).
  11. T. Kawasaki, T. Ujiro, S. Owada, and S. Kakihara, Application of Stainless Steel'92 (eds. H. Nordberg and J. Bjorklund), p.725, ASM International, Stockholm, Sweden (1992).
  12. JASO (Japanese Automobile Standards Organization), M 611-92, Society of Automotive Engineers in Japan, Tokyo, Japan (1992).
  13. General Motors Co., GM 9540P (1997).
  14. R.R. Gaugh, 5th Automotive Corrosion and Prevention Conf., No. 912294, p.195, Society of Automotive Engineers, Dearborn, MI (1991).
  15. D.-H. Shin, J.-J. Shim, Y.-S. Choi and J.-G. Kim, J. Kor. Inst. Met. & Mater. 42. 1021 (2004).
  16. Y. Ionue and M. Kikuchi, Nippon Steel Tech. Rep. 88, 62 (2003).
  17. A. Sabata, C.S. Brossia, and M. Behling, CORROSION 98, No. 549, NACE, Huston, TX (1998).
  18. Y.-H. Kim, S.-H. Park, and Y.-D. Lee, Stainless Steel World 99 Conf., No. SSW99-064, p.195, Hague, The Netherlands (1999).
  19. E. Sato, S. Ito, R. Matsuhashi, and H. Abo, JSAE Review 12, 58 (1991).
  20. Y. Tarutani and T. Hashizume, CORROSION 98, No. 386, NACE, Huston, TX (1995).
  21. T. Utsunomiya, et. al., CAMP-ISIJ 4, 1823 (1991).
  22. POSCO, POSCO Internal Standards (2006).
  23. E. Sato, et. al., CAMP-ISIJ, 4, 1827 (1991).
  24. M. Kitazawa, et. al., Zairy&Omacr 6, 740 (1993).
  25. T. Hashizume, et. al., CAMP-ISIJ 5, 1941 (1992).
  26. C.S. Brossia and K.L. Martin, CORROSION 98, No. 542, NACE, Huston, TX (1998).
  27. S. Frangini and A. Mignone, Corrosion 48, 715 (1992). https://doi.org/10.5006/1.3315992
  28. J. B. Lee, Proceedings of an International Symposium Honoring Professor H.H. Uhlig on his birthday; Corrosion and Protection, p.201, Electrochem. Soc., Corr. Div., Denver, CO. (1981).
  29. J. B. Lee, Corrosion 42,106 (1986). https://doi.org/10.5006/1.3584882
  30. H. Kim and Y.-D. Lee, Corrosion 57, 547 (2001). https://doi.org/10.5006/1.3290381
  31. H. Kim, POSCO Tech. Rep., No.19990009, p.218, Pohang, Korea (1999).
  32. D. -H. Shin, J. -J. Shin, Y. -S, Choi and J. -G. Kim, J. Kor. Inst. Met. & Mater. 42. 1021 (2004).