Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.5.327

Characteristics and Formation of Thermal Oxidative Film Silicon Carbide for MOS Devices  

O, Gyeong-Yeong (동신대학교 공과대학 세라믹공학과)
Lee, Gye-Hong (동신대학교 공과대학 세라믹공학과)
Lee, Gye-Hong (동신대학교 대학원 물리과)
Jang, Seong-Ju (동신대학교 대학원 물리과)
Publication Information
Korean Journal of Materials Research / v.12, no.5, 2002 , pp. 327-333 More about this Journal
Abstract
In order to obtain the oxidation layer for SiC MOS, the oxide layers by thermal oxidation process with dry and wet method were deposited and characterized. Deposition temperature for oxidation layer was $1100^{\circ}C$~130$0^{\circ}C$ by $O_2$ and Ar atmosphere. The oxide thickness, surface morphology, and interface characteristic of deposited oxide layers were measurement by ellipsometer, SEM, TEM, AFM, and SIMS. Thickness of oxidation layer was confirmed 50nm and 90nm to with deposition temperature at $1150^{\circ}C$ and $1200{\circ}C$ for dry 4 hours and wet 1 hour, respectively. For the high purity oxidation layer, the necessity of sacrificial oxidation which is etched for the removal of the defeats on the wafer after quickly thermal oxidation was confirmed.
Keywords
SiC; thermal oxidation; sacrifice oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kobayashi, T. Sakurai, M. Nishiyama, and Y. Nishioka, Appl. phys. Let., 76(16), 2336 (2001)
2 R.C. Jaeger, Introduction to Microelectronic Fabrication Volume V, P. 29
3 M.B. Johnson, M.E. Zvanut, and Otha Fichardson, J. electronic materials., 29 (3), 368 (2000)   DOI   ScienceOn
4 L.A. Lipkin and J.W. Palmour, J. Electronic Materials., 25(5), 909 (1995)   DOI
5 M.K. Das, J.A. Cooper, JR., and M.R. Melloch, J. electronic Materials., 27(4), 353 (1998)   DOI   ScienceOn
6 K. Yamashita, M. Iwamoto, and T. Hino, Jpn. J. Appl. Phsy., 20(8), 1429 (1981)   DOI
7 E.F.Opila, J.Am. Ceram.Soc., 82(3), 625 (1999)   DOI   ScienceOn
8 H.I. Matsunami, Electronics and Communications in Japan. Part 2., 81 (7), 38 (1998)   DOI   ScienceOn
9 M. Ventra and S.T. Pantelides, J. Electronic materials., 26(3), 353 (2000)
10 M. Eickhoff, N. Vouroutzis, A. Nielsen, G. Krotz, and J. Stoemenos, J. electrochemical society., 148(6), G336 (2001)   DOI   ScienceOn
11 P.K. Nauta and M.W. Hillen, J. Appl. Phys., 49(5), 2862 (1978)   DOI   ScienceOn
12 A.G. Tangena, J. Middelhoek, and N.F. de Rooij, Jpn. J. Appl. phys., 49 (5), 2876 (1978)   DOI   ScienceOn
13 K. Yamashita and T. Hino, Jpn. J. Appl. Phys., 21 (10), 1437 (1982)   DOI
14 B.E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965)   DOI
15 A. Goetzberger and J.C. Irvin, IEEE. Trans. Electron Devices., 15, 1009 (1968)   DOI   ScienceOn
16 E.I. Goldman, A.G. Zhdan, and N. F. Kukharsksya, semicconductors., 33(3), 308 (1999)   DOI   ScienceOn
17 M. Bakowski, U. Gustafsson, and Z. Ovuka, Microelectron. Reliab., 38 (3), 381 (1998)   DOI   ScienceOn
18 A. Rys, N. Singh, and M. Cameron, J. Electrochem. Soc, 142(4), 1318 (1995)   DOI
19 Inter-university Semiconductor Research Center, SEOUL NATIONAL UNIVERSITY.,
20 A. Suzuki, H. Ashida, and N. Furui, Jpn. J. Appl. Phys., 21 (4), 579 (1982)   DOI
21 J. Anthony powell, David J. Larkin, and Phillip B. ABEL, J. Electronic Materials., 24(4), 295 (1995)   DOI   ScienceOn
22 L. zhou, V. Audurier, and P. Pirouz, J. Electrochem. Soc, 144(6), L161 (1997)   DOI   ScienceOn
23 J. Boo, S. Lee, K. Yu, M. Sung, and Y.Kim, surface and coatings Tech., 131, 147 (2000)   DOI   ScienceOn