Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.12.950

Synthesis of Hollow Cu Oxide Nanoparticles by Oxidation  

Lee, Jung-Goo (Functional Materials Division, Korea Institute of Materials Science)
Baek, Youn-Kyoung (Functional Materials Division, Korea Institute of Materials Science)
Chung, Kook-Chae (Functional Materials Division, Korea Institute of Materials Science)
Choi, Chul-Jin (Functional Materials Division, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.49, no.12, 2011 , pp. 950-955 More about this Journal
Abstract
In the present study, the formation of hollow Cu oxide nanoparticles through the oxidation process at temperatures from 200 to $300^{\circ}C$ has been studied by transmission electron microscopy with Cu nanoparticles produced by the plasma arc discharge method. The Cu nanoparticles had a thin oxide layer on the surface at room temperature and the thickness of this oxide layer increased during oxidation in atmosphere at $200-300^{\circ}C$ However, the oxide layer consisted of $Cu_2O$ and CuO after oxidation at $200^{\circ}C$ whereas this layer was comprised of only CuO after oxidation at $300^{\circ}C$ On the other hand, hollow Cu oxide nanoparticles are obtained as a result of vacancy aggregation in the oxidation processes, resulting from the rapid outward diffusion of metal ions through the oxide layer during the oxidation process.
Keywords
oxidation; hollow; nanoparticles; interdiffusion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Yin et al., Science 304, 711 (2004).   DOI   ScienceOn
2 J. M. D. Coey and H. Sun, J. Magn. Mater. 87, L251 (1990).   DOI   ScienceOn
3 Y. Otani, D. P. F. Hurley, H. Sun, and J. M. D. Coey, J. Appl. Phys. 69, 5584 (1991).   DOI
4 M. Miyake, Catalysts & Catalysis 48, 604 (2006).
5 L. I. Hung, C. K. Tsung, W. Huang, and P. Yang, Adv. Mater. 22, 1910 (2010).   DOI   ScienceOn
6 Y. S. Cho and Y. D. Huh, Bull. Korean Chem. Soc. 30, 1410 (2009).   DOI   ScienceOn
7 C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, Adv. Mater. 17, 2562 (2005).   DOI   ScienceOn
8 S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc. 124, 7642 (2002).   DOI   ScienceOn
9 Y. Sun and Y. Xia, J. Am. Chem. Soc. 126, 3892 (2004).   DOI   ScienceOn
10 Y. Deng. L. Zhao, B. Shen, L. Liu, and W. Hu, J. Appl. Phys. 100, 014304 (2006).   DOI   ScienceOn
11 J. Lee, K. Sohn, and T. Hyeon, J. Am. Chem. Soc. 123, 5146 (2001).   DOI   ScienceOn
12 T. K. Mandal, M. S. Fleming, and D. R. Walt, Chem. Mater. 12, 3481 (2000).   DOI   ScienceOn
13 C. Graf and A. Blaaderen, Langmuir 18, 524 (2002).   DOI   ScienceOn
14 Y. Yin, R. M. Robert, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, Science 304, 711 (2004).   DOI   ScienceOn
15 R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, Mater. Sci. Forum 544, 347 (2007).
16 R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, Mater. Lett. 61, 1060 (2007).   DOI   ScienceOn
17 R. Nakamura, D. Tokozakura, H. Nakajima, J. G. Lee, and H. Mori, J. Appl. Phys. 101, 074303 (2007).   DOI   ScienceOn
18 R. Nakamura, D. Tokozakura, J. G. Lee, H. Mori, and H. Nakajima, Acta Mater. 56, 5276 (2008).   DOI   ScienceOn
19 X. F. Zhang et al., Appl. Phys. Lett. 89, 053115 (2006).   DOI   ScienceOn
20 J. Vejpravová et al., J. Appl. Phys. 97, 124304 (2005).   DOI   ScienceOn
21 Q. Zeng, I. Baker, J. B. Cui, and Z .C. Yan, J. Magn. Magn. Mater. 308, 214 (2007).   DOI   ScienceOn
22 X. L. Dong, C. J. Choi, and B. K. Kim, Scr. Mater. 47, 857 (2002).   DOI   ScienceOn
23 X. L. Dong, Z. D. Zhang, S.R. Jin, and B.K. Kim, J. Appl. Phys. 86, 6701 (1999).   DOI   ScienceOn
24 D. Vollath, J. Nanopart. Res. 10, 39 (2008).   DOI   ScienceOn
25 J. -G. Lee, P. Li, C. J. Choi, and X. L. Dong, Thin Solid Films 519, 81 (2010).   DOI   ScienceOn
26 J. -G. Lee, P. Li, X. L. Dong, and C. -J. Choi, Kor. J. Met. Mater. 48, 357 (2010).   DOI   ScienceOn
27 S. Ram and C. Mitra, Mater. Sci. Eng. A 304, 805 (2001).
28 V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, Phys. Rev. B 53, 2167 (1996).   DOI   ScienceOn
29 L. Huang, F. Peng, H. Yu, and H. J. Wang, Solid State Sciences 11, 129 (2009).   DOI   ScienceOn
30 P. Kofstad, High-Temperature Oxidation of Metals, New York, p.41, John Wiley&Sons, Inc. (1966).
31 N. Cabrera and N. F. Mott, Rept. Progr. Phys., 12, 163 (1948-49).   DOI   ScienceOn
32 J. W. Hoffman and I. Lauder, Trans. Faraday Soc. 66, 2346 (1970).   DOI
33 N. L. Peterson and C. L. Wiley, J. Phys. Chem. Solids 45, 281 (1984).   DOI   ScienceOn
34 W. J. Moore, Y. Ebisuzaki, and J. A. Sluss, J. Phys. Chem. 62, 1438 (1958).   DOI
35 W. J. Moore and E. L. Williams, Discussions Faraday Soc. 28, 86 (1959).   DOI
36 M. L. Gall and B. Lesage, Philos. Mag. A 70, 761 (1994).
37 D. Prot. C. Monty, Philos. Mag. A 73, 899 (1996).   DOI