Browse > Article

Oxidation Process of Epitaxial Ni(111) Thin Films Deposited on GaN/Sapphire(0001) Substrates  

Seo, S.H. (Korea Electrotechnology Research Institute)
Kang, Hyon-Chol (Department of Advanced Materials Engineering, Chosun University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.22, no.6, 2009 , pp. 354-360 More about this Journal
Abstract
This paper reports the oxidation mechanism of epitaxial Ni thin films grown on GaN/sapphire(0001) substrates, investigated by real-time x-ray diffraction and scanning electron microscopy. At the initial stage of oxidation process, a thin NiO layer with a thickness of ${\sim}50\;{\AA}$ was formed on top of the Ni films. The growth of such NiO layer was saturated and then served as a passive oxide layer for the further oxidation process. For the second oxidation stage, host Ni atoms diffused out to the surfaces of initially formed NiO layer through the defects running vertically to form NiO grains, while the sites that were occupied by host Ni, became voids. The crystallographic properties of resultant NiO films, such as grain size and mosaic distribution, rely highly on the oxidation temperatures.
Keywords
Ni; oxidation; in-situ x-ray diffraction; epitaxy; passive layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Kazeminezhad and W. Schwarzacher : Journal of Solid State Electrochemistry 8 (2004) 187   DOI   ScienceOn
2 K. Benkirane, R. Elkabil, M. Lassri, M. Abid, H. Lassri, A. Hamdoun and R. Krishnan : Journal of Alloys and Compounds 388 (2005) 186   DOI   ScienceOn
3 H. C. Kang, S. H. Seo, H. W. Jang, D. H. Kim, and D. Y. Noh : Appl. Phys. Lett. 83 (2003) 2139   DOI   ScienceOn
4 L. G. Parratt : Phys. Rev. 95 (1954) 359   DOI
5 S. K. Sinha : Phys. Rev. B 38 (1988) 2297   DOI   ScienceOn
6 H. C. Kang, S. H. Seo, J. W. Kim, and D. Y. Noh : Appl. Phys. Lett. 80 (2002) 1364   DOI   ScienceOn
7 N. Cabrera and N. F. Mott : Rep. Prog. Phys. 12 (1949) 163   DOI   ScienceOn
8 H. Tokoro, S, Fujii, S, Muto, and S, Nasu : J. Appl. Phys. 99 (2006) 08Q512   DOI   ScienceOn
9 R. S. Saiki, A. P. Kaduwela, J. Osterwalder, and C. S. Fadley : Phys. Rev. B 40 (1989) 1586   DOI   ScienceOn
10 C. Scheck, P. Evans, R. Schad, G. Zangari, J. R. Williams, and T. F. Issacs-Smith : J. Phys. D 14 (2002) 12329   DOI   ScienceOn
11 M. Chen, P. C. Searson, and C. L. Chien : J. Appl. Phys. 93 (2003) 8253   DOI   ScienceOn
12 P. H. Holloway and J. B. Hudson : Surface Sci. 43 (1974) 123   DOI   ScienceOn
13 J.-K. Ho. C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai : J. Appl. Phys. 86 (1999) 4491   DOI   ScienceOn
14 B. E. Warren, X-ray Diffraction (Addison-Wesley Pub. Co, 1969) p. 253
15 Y. Zhang, X. Peng, and F. Wang : Materials Lett. 58 (2004) 1134   DOI   ScienceOn
16 I. Wilke, Y. Oppliger, W. Herrmann and F. K. Kneubuhl : Appl. Phys. A 58 (1994) 329   DOI
17 E. Kopatzki and R. J. Behm : Phys. Rev. Lett. 74 (1995) 1399   DOI   ScienceOn
18 T. Isobe, R. A. Weeks and R. A. Zuhr : Solid State Communications, 105 (1998) 469   DOI   ScienceOn
19 S. H. Kim, J. H. Chung, Y. T. Kim, J. Han, S. P. Yoon, S.-W. Nam, T.-H. Lim and H.-I. Lee : Catalysis Today 146 (2009) 96   DOI   ScienceOn