• Title/Summary/Keyword: orthogonal complement

Search Result 13, Processing Time 0.023 seconds

ZERO SUMS OF DUAL TOEPLITZ PRODUCTS ON THE ORTHOGONAL COMPLEMENT OF THE DIRICHLET SPACE

  • Young Joo, Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.161-170
    • /
    • 2023
  • We consider dual Toeplitz operators acting on the orthogonal complement of the Dirichlet space on the unit disk. We give a characterization of when a finite sum of products of two dual Toeplitz operators is equal to 0. Our result extends several known results by using a unified way.

AN ELEMENTARY COMPUTATION OF HANKEL MATRICES ON THE UNIT DISC

  • Chung, Young-Bok
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.691-700
    • /
    • 2021
  • In this paper, we compute directly the Hankel matrix representation of the Hankel operator on the Hardy space of the unit disc without using any classical kernel functions with respect to special orthonormal bases for the Hardy space and its orthogonal complement. This gives an elementary proof for the formula.

SOME PROPERTIES OF BILINEAR MAPPINGS ON THE TENSOR PRODUCT OF C -ALGEBRAS

  • Sarma, Anamika;Goswami, Nilakshi;Mishra, Vishnu Narayan
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.977-1003
    • /
    • 2019
  • Let 𝓐 and 𝓑 be two unital C-algebras and 𝓐 ⊗ 𝓑 be their algebraic tensor product. For two bilinear maps on 𝓐 and 𝓑 with some specific conditions, we derive a bilinear map on 𝓐 ⊗ 𝓑 and study some characteristics. Considering two 𝓐 ⊗ 𝓑 bimodules, a centralizer is also obtained for 𝓐 ⊗ 𝓑 corresponding to the given bilinear maps on 𝓐 and 𝓑. A relationship between orthogonal complements of subspaces of 𝓐 and 𝓑 and their tensor product is also deduced with suitable example.

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

OBLIQUE PROJECTIONS AND SHIFT-INVARIANT SPACES

  • Park, Sang-Don;Kang, Chul
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1207-1214
    • /
    • 2008
  • We give an elementary proof of one of the main results in [H.O. Kim, R.Y. Kim, J.K. Lim, The infimum cosine angle between two finitely generated shift-invariant spaces and its applications, Appl. Comput. Har-mon. Anal. 19 (2005) 253-281] concerning the existence of an oblique projection onto a finitely generated shift-invariant space along the orthogonal complement of another finitely generated shift-invariant space under the assumption that the generators generate Riesz bases.

  • PDF

GEOMETRY OF LIGHTLIKE HYPERSURFACES OF AN INDEFINITE COSYMPLECTIC MANIFOLD

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.185-195
    • /
    • 2012
  • We study the geometry of lightlike hypersurfaces M of an inde nite cosymplectic manifold $\bar{M}$ such that either (1) the characterist vector field $\zeta$ of $\bar{M}$ belongs to the screen distribution S(TM) of M or (2) $\zeta$ belongs to the orthogonal complement $S(TM)^{\perp}$ of S(TM) in $T\bar{M}$.

COMPUTATION OF HANKEL MATRICES IN TERMS OF CLASSICAL KERNEL FUNCTIONS IN POTENTIAL THEORY

  • Chung, Young-Bok
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.973-986
    • /
    • 2020
  • In this paper, we compute the Hankel matrix representation of the Hankel operator on the Hardy space of a general bounded domain with respect to special orthonormal bases for the Hardy space and its orthogonal complement. Moreover we obtain the compact form of the Hankel matrix for the unit disc case with respect to these bases. One can see that the Hankel matrix generated by this computation turns out to be a generalization of the case of the unit disc from the single simply connected domain to multiply connected domains with much diversities of bases.

A Study on Phase Error of Orthogonal MC DS-CDMA Using Hybrid SC/MRC-2/4 (하이브리드 SC/MRC-2/4기법을 적용한 직교 MC DS-CDMA 시스템의 위상 에러에 관한 연구)

  • Kim, Won-Sbu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1734-1741
    • /
    • 2007
  • In this paper, the Hybrid SC/MRC-2/4 method in which bit synchronization and phase synchronization were not required was applied to the orthogonal MC DS-CDMA system in which each normalized subcarrier interval and processing gain had the same value, respectively, and the direct sequence spread code of each subcarrier was orthogonal. In the broadband wireless system in which multi-carrier transmission was used, a Doppler frequency shift occurred, which was caused by the difference between the highest subcarrier frequency md the lowest subcarrier frequency. In order to complement phase error caused by the shift, the orthogonal MC DS-CDMA system was analyzed so that the receiving signal could be perfectly synchronized by adjusting the PLL gain suitable for the entire system. As a result of simulations, as the PLL gain was increased, the change in the intervals was close to the case of perfect synchronization however, it became less when the PLL gain reached more than a certain value. Therefore, by selecting a proper PLL gain suitable for the system the orthogonal MC DS-CDMA can be designed in which the Hybrid SC/MRC method is applied.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF