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COMPUTATION OF HANKEL MATRICES IN TERMS OF

CLASSICAL KERNEL FUNCTIONS IN POTENTIAL THEORY

Young-Bok Chung

Abstract. In this paper, we compute the Hankel matrix representation

of the Hankel operator on the Hardy space of a general bounded domain
with respect to special orthonormal bases for the Hardy space and its

orthogonal complement. Moreover we obtain the compact form of the
Hankel matrix for the unit disc case with respect to these bases. One

can see that the Hankel matrix generated by this computation turns out

to be a generalization of the case of the unit disc from the single simply
connected domain to multiply connected domains with much diversities

of bases.

1. Introduction

Suppose that Ω is a bounded domain in the complex plane with C∞ smooth
boundary. For a function ϕ ∈ L∞(bΩ), the Hankel operator with the symbol ϕ
on the Hardy space H2(bΩ) is the bounded operator Hϕ : H2(bΩ)→ H2(bΩ)⊥

defined by
Hϕ(f) = P⊥(ϕf),

where H2(bΩ)⊥ is the orthogonal complement of H2(bΩ) in L2(bΩ) and P⊥ is
the orthogonal projection of L2(bΩ) onto H2(bΩ)⊥.

The Hankel operators on the Hardy spaces belong to one of the most im-
portant classes of operators in function theory and in particular they are very
important in systems theory and control theory. (See more in [7]).

The matrix representation [Hϕ] of the Hankel operator Hϕ with respect to
given orthonormal bases for H2(bΩ) and H2(bΩ)⊥ is called the Hankel ma-
trix associated to the Hankel operator Hϕ under the corresponding bases. In
general, Hankel matrices are of the form

(αl+m)

whose entries depend only on the sum of the coordinates when the two indices
are nonnegative. Until now, the theory of Hankel operators on the Hardy spaces
has been developed mainly for the case of the unit disc (and more extendibly the
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unit ball or polydiscs in Cn) which is the base domain. In fact, when Ω is the
unit disc, it turns out that the Hankel matrix under the orthonormal bases of
monomials 1√

2π
zp, p = 0, 1, 2, . . . and their reciprocals 1√

2π
zp, p = −1,−2, . . . ,

is determined explicitly in terms of the Fourier coefficients of the symbol ϕ.
(See [4, 7]).

On the other hand, general theory of Hankel operators on arbitrary bounded
domains is much more complicated than one for the unit disc case and even
Hankel matrices represented by Hankel operators associated to general domains
have been never computed before. So in this paper, I, as a starting point of
work for general domains, would like to compute the Hankel matrix of the
Hankel operator Hϕ : H2(bΩ)→ H2(bΩ)⊥ with respect to special orthonormal
bases for H2(bΩ) and for H2(bΩ)⊥ which were constructed by the author in [5].
One can see that the Hankel matrix generated by this computation turns out to
be a generalization of the case of the unit disc from the single simply connected
domain to multiply connected domains with much diversities of bases.

The paper is outlined as follows. In §2 we introduce notations and notions
used in the paper and list known results. In particular, we survey on important
properties of the classical kernel functions and orthogonal projections to be
used often in the paper. In §3 we, as main results of the paper, would like to
compute the Hankel matrix of the Hankel operator on the Hardy space of a
general bounded domain with special orthonormal bases for the Hardy space
and its orthogonal complement. And finally we work on the unit disc and
obtain the compact form of the Hankel matrices.

2. Preliminaries and notes

Throughout the paper, we assume that n ∈ N is fixed and Ω is a bounded
n-connected region with C∞ smooth boundary unless otherwise specified. The
Cauchy integral formula says that for any homomorphic function f in a neigh-
borhood of Ω and for any point w in Ω, the value of f at w is represented by
the boundary values of f via

(1) f(w) =
1

2πi

∫
bΩ

f(z)

z − w
dz.

If we introduce the classical L2 inner product 〈 , 〉 defined by

〈u, v〉 =

∫
bΩ

u v ds,

where ds is the differential element of arc length on the boundary bΩ, the
integral formula (1) is equivalent to the identity

f(w) = 〈f, Cw〉,

where Cw(z) = 1
2πi

T (z)
z−w is the Cauchy kernel and T is the unit tangent vector

function on bΩ pointing in the direction of the standard orientation of bΩ. The
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function T relates to the arc length via the identity

(2) ds = T (z)dz on bΩ.

Now let L2(bΩ) be the Hilbert space completion of C∞(bΩ) with respect
to the inner product 〈 , 〉 and let H2(bΩ) denote the classical Hardy space
associated to Ω which is the space of holomorphic functions on Ω with L2-
boundary values in bΩ. Since H2(bΩ) can be regarded as the completion of
the restrictions of holomorphic functions in C∞(Ω) to bΩ in L2(bΩ), it follows
from the inequality |f(w)| ≤ ‖f‖L2(bΩ)‖Cw‖L2(bΩ) that the evaluation function

at a ∈ Ω is a continuous linear functional on H2(bΩ). Thus, given w ∈ Ω,
we can apply the Riesz Representation Theorem to the linear functional on
H2(bΩ) to get a unique function Sw ∈ H2(bΩ) such that for all f ∈ H2(bΩ),

f(w) = 〈f, Sw〉 =

∫
bΩ

f Sw ds.

On the other hand, since H2(bΩ) is a closed subspace of L2(bΩ), there exists
the orthogonal projection of L2(bΩ) onto H2(bΩ) called the Szegő projection
which is denoted by

P : L2(bΩ)→ H2(bΩ).

Since for all f ∈ H2(bΩ),

〈f, Sw〉 = f(w) = 〈f, Cw〉 = 〈f, P (Cw)〉

and P (Cw) ∈ H2(bΩ), the uniqueness property for the function Sw implies that

P (Cw) = Sw

and we call Sw the Szegő kernel for the Szegő projection P and Sw is denoted
by Sw(z) = S(z, w) when it is considered as a function of two variables z and
w.

It is well known (see [1, 2]) that any u ∈ L2(bΩ) has an orthogonal de-
composition as a direct sum of the Hardy space H2(bΩ) and the orthogonal
complement H2(bΩ)⊥ of the Hardy space via

(3) u = PΩ(u) + T P (uT ).

There is also a special kernel function which is the kernel for the orthogonal
projection P⊥ of the Szegő projection P in some sense. The Garabedian kernel
function G(z, w) is defined by

(4) G(z, w) =
1

2π(z − w)
+ P

(
iCwT

)
(z) =

1

2π(z − w)
+ 〈iCwT , Sz〉.

It is easy to see from (4) that for fixed w = a ∈ Ω, G(z, a) is a meromorphic
function on Ω with a single simple pole at z = a having residue 1

2π which
extends C∞ smoothly up to the boundary of Ω. It is also known (see [1]) that
L(z, a) never vanishes for all (z, a) ∈ Ω×Ω with z 6= a. An important property
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about the Szegő kernel and the Garabedian kernel to which we often refer in
this paper is

(5) G(z, w) = i S(z, w) T (z), (z, w) ∈ bΩ× Ω.

It is very interesting to see that given a ∈ Ω, the quotient map

(6) fa(z) =
S(z, a)

G(z, a)

is the Ahlfors map (which is a generalization of the Riemann mapping function
in the case of simply connected regions) associated to the pair (Ω, a) which
is a proper holomorphic mapping of Ω onto the unit disc with fa(a) = 0 and
f ′a(a) > 0, having the extremal property as follows: the function fa maximizes
h′(a) among all holomorphic functions h mapping Ω into the unit disc making
h′(a) real valued (see [6]).

3. Hankel matrices

In this main section, we would like to compute the Hankel matrix of the
Hankel operator on the Hardy space of a general bounded domain with special
orthonormal bases for the domain and the codomain spaces.

Now let Ω is n-connected and let a ∈ Ω be fixed. We may assume that the
Ahlfors map fa has exactly n distinct simple zeroes a0, a1, . . . , an−1 in Ω with
a0 = a (see [3] for this fact). Notice from (6) that a1, a2, . . . , an−1 are all zeroes
of Sa in Ω. For k ≥ 0 and j = 0, 1, . . . , n− 1, we define

Ekn := c00S(z, a)fa
k, c00 =

1√
S(a, a)

,(7)

Ekn+j :=

j∑
i=1

cijS(z, ai)fa
k for j ≥ 1,

(8)

E−kn−j := (1− δj0)

j−1∑
i=0

ci,j−1G(z, ai)/fa
k

+ δj0

n−1∑
i=0

ci,n−1G(z, ai)/fa
k−1 for kn+ j ≥ 1,

where the numbers cij are the constants obtained in the process of normalizing
the ordered basis

{S(z, a)fa
k, S(z, a1)fa

k, . . . , S(z, an−1)fa
k ;

G(z, a)/fa
k, G(z, a1)/fa

k, . . . , G(z, an−1)/fa
k | k ≥ 0, j = 0, 1, . . . , n− 1}

for the space L2(bΩ). See more details in [5]. Then we obtain the orthonormal
bases

B+ := {Ekn+j | k ≥ 0, j = 0, 1, . . . , n− 1},
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B− := {E−kn−j | k ≥ 0, j = 0, 1, . . . , n− 1; kn+ j ≥ 1},
B := B+ ∪ B−

for H2(bΩ), H2(bΩ)
⊥

, L2(bΩ), respectively. We want to make sure that we are
using indices according to the Euclidean division modulo n with k ≥ 0 first
and then j through n − 1 for nonnegative integers. And for negative integers
we use indices in the backward direction starting from −1 for convenience.

Let ϕ =
∑∞
p=−∞ αpEp be the Fourier series representation associated to the

base B. We are then ready to compute the matrix representation of the Hankel
operator Hϕ : H2(bΩ) → H2(bΩ)⊥ with respect to the orthonormal bases B+

and B−.
Suppose that m = kmn+ jm, km ≥ 0, jm = 0, 1, . . . , n− 1 is a nonnegative

integer with the standard form of Euclidean division and for l ≤ −1, let l =
−k−ln− j−l, k−l ≥ 0, j−l = 0, 1, . . . , n− 1.

Then the l-th and m-th entry of the Hankel matrix [Hϕ] is obtained by

[Hϕ]lm = 〈Hϕ(Em), El〉 =

∞∑
p=−∞

αp〈EpEm, El〉.(9)

Remember again that the row column runs in the negative direction starting
from −1. Thus we need to compute the triple inner product of Ep, Em and
El of the form 〈EpEm, El〉 in order to get the entry of Hankel matrix. Let
p = kpn+ jp be the standard form.

Lemma 3.1. For p ≥ 0,m ≥ 0 and l ≤ −1, 〈EpEm, El〉 = 0.

Proof. If p = kpn+ jp ≥ 0, m = kmn+ jm ≥ 0 and l = −k−ln ≤ −1, it follows
from identities (5) and (2) that

〈EpEm, El〉

=

jp∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,jpcµ,jmcν,n−1

∫
bΩ

SaiSaµfa
kp+km+k−l−1Gaν ds

=
√
−1

jp∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,jpcµ,jmcν,n−1

∫
bΩ

SaiSaµfa
kp+km+k−l−1Saν dz

which equals zero because the power kp + km + k−l − 1 ≥ 0 and hence the
integrand is holomorphic.

If p = kpn + jp ≥ 0, m = kmn + jm ≥ 0 and l = −k−ln − j−l ≤ −1 with
j−l ≥ 1, it follows from identities (5) and (2) that

〈EpEm, El〉

=

jp∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,jpcµ,jmcν,j−l−1

∫
bΩ

SaiSaµfa
kp+km+k−lGaν ds
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=
√
−1

jp∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,jpcµ,jmcν,j−l−1

∫
bΩ

SaiSaµfa
kp+km+k−lSaν dz

which equals zero because in this case the power kp + km + k−l ≥ 0 and hence
the integrand is holomorphic. �

Lemma 3.2. For p = −k−pn ≤ −1, m = kmn+ jm ≥ 0 and l = −k−ln ≤ −1,

〈EpEm, El〉

=
√
−1

jm∑
µ=0

n−1∑
ν=0

[
c0,n−1cµ,jmcν,n−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

+

n−1∑
i=1

ci,n−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz

]
.

Proof. It easily follows from (2) that

〈EpEm, El〉

=

n−1∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,n−1cµ,jmcν,n−1

∫
bΩ

GaiSaµfa
km+k−l−k−p Gaν ds

=
√
−1

n−1∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,n−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz.

Letting the summation with index i expand, we obtain from the identity (6)
the desired formula of the Lemma. �

In the several coming lemmas, we use the same method of proof as the
previous Lemma 3.2 but we are willing to introduce proofs here for easy un-
derstanding of series for each case of p and l.

Lemma 3.3. For p = −k−pn ≤ −1, m = kmn+jm ≥ 0 and l = −k−ln−j−l ≤
−1 with j−l ≥ 1,

〈EpEm, El〉

=
√
−1

jm∑
µ=0

j−l−1∑
ν=0

[
c0,n−1cµ,jmcν,j−l−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p dz

+

n−1∑
i=1

ci,n−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p+1 dz

]
.

Proof. It easily follows from (2) that

〈EpEm, El〉
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=

n−1∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,n−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµfa
km+k−l−k−p+1 Gaν ds

=
√
−1

n−1∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,n−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p+1 dz.

Letting the summation with index i expand, we obtain from the identity (6)
the desired formula. �

Lemma 3.4. For p = −k−pn − j−p ≤ −1 with j−p ≥ 1, m = kmn + jm ≥ 0
and l = −k−ln ≤ −1,

〈EpEm, El〉

=
√
−1

jm∑
µ=0

n−1∑
ν=0

[
c0,j−p−1cµ,jmcν,n−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p−2 dz

+

j−p−1∑
i=1

ci,j−p−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p−1 dz

 .
Proof. It easily follows from (2) that

〈EpEm, El〉

=

j−p−1∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,jp−1cµ,jmcν,n−1

∫
bΩ

GaiSaµfa
km+k−l−k−p−1 Gaν ds

=
√
−1

jp−1∑
i=0

jm∑
µ=0

n−1∑
ν=0

ci,jp−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p−1 dz.

Letting the summation with index i expand, we obtain from the identity (6)
the desired formula. �

Lemma 3.5. For p = −k−pn − j−p ≤ −1 with j−p ≥ 1, m = kmn + jm ≥ 0
and l = −k−ln− j−l ≤ −1 with j−l ≥ 1,

〈EpEm, El〉

=
√
−1

jm∑
µ=0

j−l−1∑
ν=0

[
c0,j−p−1cµ,jmcν,j−l−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

+

j−p−1∑
i=1

ci,j−p−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz

 .
Proof. It easily follows from (2) that

〈EpEm, El〉
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=

j−p−1∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,j−p−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµfa
km+k−l−k−p Gaν ds

=
√
−1

j−p−1∑
i=0

jm∑
µ=0

j−l−1∑
ν=0

ci,j−p−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz.

Letting the summation with index i expand, we obtain from the identity (6)
the desired formula. �

Now we collect all formulas obtained from Lemma 3.1 through Lemma 3.5
to compute the Hankel matrix.

Theorem 3.6. Suppose that Ω is an n-connected bounded domain with C∞

smooth boundaries. Let B+ := {Ekn+j | k ≥ 0, j = 0, 1, . . . , n − 1} and B− :=
{E−kn−j | k ≥ 0, j = 0, 1, . . . , n − 1; kn + j ≥ 1} be the orthonormal bases

for H2(bΩ) and H2⊥(bΩ), respectively. Suppose that ϕ =
∑∞
p=−∞ αpEp ∈

L∞(bΩ). Then the Hankel matrix [Hϕ] associated to the Hankel operator Hϕ

with symbol ϕ on the Hardy space H2(bΩ) with respect to the bases B+ and B−
is given by

[Hϕ]lm =

−1∑
p=−∞

αp ·
[
δ
j−p
0 δ

j−l
0 Ap + δ

j−p
0 (1− δj−l0 )Bp + (1− δj−p0 )δ

j−l
0 Cp

+(1− δj−p0 )(1− δj−l0 )Dp

]
for l ≤ −1,m ≥ 0 where Ap, Bp, Cp and Dp are the numbers depending on the
remainders of p, l and m in the Euclidean division modulo n as follows:

Ap = 2πχ[km+k−l,∞)(k−p)c0,n−1c0,jmc0,n−1
1

(k−p − km − k−l)!

·

 G̃a(z)
k−p−km−k−l+1

Sa(z)
k−p−km−k−l−2

(k−p−km−k−l)

(a)

+ 2πχ[km+k−l+3,∞)(k−p)

n−1∑
j=1

c0,n−1c0,jmc0,n−1
1

(k−p − km − k−l − 3)!

·

 (z − aj)k−p−km−k−l−2G̃a(z)
k−p−km−k−l+1

(z − a)k−p−km−k−l+1Sa(z)
k−p−km−k−l−2

(k−p−km−k−l−3)

(aj)

√
−1

jm∑
µ=0

n−1∑
ν=0

(1− δµ+ν
0 )c0,n−1cµ,jmcν,n−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

√
−1

jm∑
µ=0

n−1∑
ν=0

n−1∑
i=1

ci,n−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz,
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Bp = 2πχ[km+k−l+1,∞)(k−p)c0,n−1c0,jmc0,j−l−1
1

(k−p − km − k−l − 1)!

·

 G̃a(z)
k−p−km−k−l

Sa(z)
k−p−km−k−l−3

(k−p−km−k−l−1)

(a)

+ 2πχ[km+k−l+4,∞)(k−p)

n−1∑
j=1

c0,n−1c0,jmc0,j−l−1
1

(k−p − km − k−l − 4)!

·

 (z − aj)k−p−km−k−l−3G̃a(z)
k−p−km−k−l

(z − a)k−p−km−k−lSa(z)
k−p−km−k−l−3

(k−p−km−k−l−4)

(aj)

√
−1

jm∑
µ=0

j−l−1∑
ν=0

(1− δµ+ν
0 )c0,n−1cµ,jmcν,j−l−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p dz

√
−1

jm∑
µ=0

j−l−1∑
ν=0

n−1∑
i=1

ci,n−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p+1 dz,

Cp = 2πχ[km+k−l−1,∞)(k−p)c0,j−p−1c0,jmc0,n−1
1

(k−p − km − k−l + 1)!

·

 G̃a(z)
k−p−km−k−l+2

Sa(z)
k−p−km−k−l−1

(k−p−km−k−l+1)

(a)

+ 2πχ[km+k−l+2,∞)(k−p)

n−1∑
j=1

c0,j−p−1c0,jmc0,n−1
1

(k−p − km − k−l − 2)!

·

 (z − aj)k−p−km−k−l−1G̃a(z)
k−p−km−k−l+2

(z − a)k−p−km−k−l+2Sa(z)
k−p−km−k−l−1

(k−p−km−k−l−2)

(aj)

√
−1

jm∑
µ=0

n−1∑
ν=0

(1− δµ+ν
0 )c0,j−p−1cµ,jmcν,n−1

∫
bΩ

SaSaµSaνfa
km+k−l−k−p dz

√
−1

jm∑
µ=0

n−1∑
ν=0

j−p−1∑
i=1

ci,j−p−1cµ,jmcν,n−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p−1 dz,

Dp = 2πχ[km+k−l,∞)(k−p)c0,j−p−1c0,jmc0,j−l−1
1

(k−p − km − k−l)!

·

 G̃a(z)
k−p−km−k−l+1

Sa(z)
k−p−km−k−l−2

(k−p−km−k−l)

(a)
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+ χ[km+k−l+3,∞)(k−p)

n−1∑
j=1

c0,j−p−1c0,jmc0,j−l−1
1

(k−p − km − k−l − 3)!

·

 (z − aj)k−p−km−k−l−2G̃a(z)
k−p−km−k−l+1

(z − a)k−p−km−k−l+1Sa(z)
k−p−km−k−l−2

(k−p−km−k−l−3)

(aj)

√
−1

jm∑
µ=0

j−l−1∑
ν=0

(1− δµ+ν
0 )c0,j−p−1cµ,jmcν,j−l−11

∫
bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

√
−1

jm∑
µ=0

j−l−1∑
ν=0

j−p−1∑
i=1

ci,j−p−1cµ,jmcν,j−l−1

∫
bΩ

GaiSaµSaνfa
km+k−l−k−p dz,

where χA is the characteristic function of the subset A of R defined on R having
the value 1 for all elements of A and the value 0 for all elements of R not in

A and the function G̃a is defined by 2πGa(z) = G̃a(z)/(z − a).

Remark 3.7. Note that for each index p in the summation, exactly one of four
terms inside of the parentheses occurs.

Proof. We fix integers p,m, l with m ≥ 0 and l ≤ −1. We let m = kmn + jm
and l = −k−ln− j−l and may even assume from Lemma 3.1 that the number
p is of the form p = −k−pn− j−p with p ≤ −l in the Euclidean division.

It follows from the identity (9) and Lemma 3.1 that

[Hϕ]lm =

−1∑
p=−∞

αp〈EpEm, El〉

and hence we need to compute the inner product 〈EpEm, El〉 for p ≤ −l,m ≥ 0
and l ≤ −1.

Now we consider several cases depending on whether the remainders j−p and
j−l equal to zero or not.

(1) If p = −k−pn ≤ −1, j−p = 0, l = −k−ln ≤ −1, j−l = 0; 1 ≤ k−p ≤
km + k−l − 1, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz = 0.

And if p = −k−pn ≤ −1, j−p = 0, l = −k−ln ≤ −1, j−l = 0; k−p ≥ km + k−l,
then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

= 2πi

n−1∑
j=0

Res(SaSaµSaνfa
km+k−l−k−p−1; aj)

which is equal to the number Ap from Lemma 3.2 for the case of j−p = 0 and
j−l = 0.
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(2) If p = −k−pn ≤ −1, j−p = 0, l = −k−ln− j−l ≤ −1, j−l ≥ 1; 1 ≤ k−p ≤
km + k−l, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p dz = 0.

And if p = −k−pn ≤ −1, j−p = 0, l = −k−ln − j−l ≤ −1, j−l ≥ 1; k−p ≥
km + k−l + 1, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p dz

= 2πi

n−1∑
j=0

Res(SaSaµSaνfa
km+k−l−k−p ; aj)

which is equal to the number Bp from Lemma 3.3 for the case of j−p = 0 and
j−l ≥ 1.

(3) If p = −k−pn − j−p ≤ −1, j−p ≥ 1, l = −k−ln ≤ −1, j−l = 0; k−p ≤
km + k−l − 2, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p−2 dz = 0.

And if p = −k−pn − j−p ≤ −1, j−p ≥ 1, l = −k−ln ≤ −1, j−l = 0; k−p ≥
km + k−l − 1, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p−2 dz

= 2πi

n−1∑
j=0

Res(SaSaµSaνfa
km+k−l−k−p−2; aj)

which is equal to the number Cp from Lemma 3.4 for the case of j−p ≥ 1 and
j−l = 0.

(4) If p = −k−pn−j−p ≤ −1, j−p ≥ 1, l = −k−1n−j−1 ≤ −1, j−1 ≥ 1; k−p ≤
km + k−1 − 1, then ∫

bΩ

SaSaµSaνfa
km+k−1−k−p−1 dz = 0.

And if p = −k−pn− j−p ≤ −1, j−p ≥ 1, l = −k−ln− j−l ≤ −1, j−l ≥ 1; k−p ≥
km + k−l, then ∫

bΩ

SaSaµSaνfa
km+k−l−k−p−1 dz

= 2πi

n−1∑
j=0

Res(SaSaµSaνfa
km+k−l−k−p−1; aj)

which is equal to the number Dp from Lemma 3.5 for the case of j−p ≥ 1 and
j−1 ≥ 1. �
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As a special simple case, we consider the Hankel matrices for simply con-
nected domains. It easily follows from the identities (7) and (8) (or see [5])
that when Ω is simply connected, the classes

B+ = {Em =
1√

S(a, a)
S(z, a)fa

m | m ≥ 0}(10)

and

B− = {El =
1√

S(a, a)
G(z, ai)fa

l+1 | l ≤ −1}(11)

are orthonormal bases for H2(bΩ) and H2(bΩ)
⊥

, respectively. On the other
hand, in this case, since the remainder is always zero in the Euclidean division,
k−p = −p, km = m, k−l = −l for p ≤ −1,m ≥ 0, l ≤ −1. Thus it follows from
Theorem 3.6 that

[Hϕ]lm = A

= 2πδ
j−p
0 δ

j−l
0

−1∑
p=−∞

k−p≥km+k−l

αpc0,n−1c0,jmc0,n−1
1

(k−p − km − k−l)!

·

 G̃a(z)
k−p−km−k−l+1

Sa(z)
k−p−km−k−l−2

(k−p−km−k−l)

(a)

= 2π

−1∑
p=−∞
−p≥m−l

αpc
3
00

1

(−p−m+ l)!

 G̃a(z)
−p−m+l+1

Sa(z)
−p−m+l−2

(−p−m+l)

(a).

Observe that the expression in the above summation G̃a(z)
−p−m+l+1

Sa(z)
−p−m+l−2

(−p−m+l)

(a)

equals G̃a(a)S2
a(a) for p = l −m and equals (G̃a

2
Sa)′(a) for p = l −m− 1.

Hence we have obtained the following result on the Hankel matrix for the
case of simply connected domains.

Corollary 3.8. Suppose that Ω is a simply connected bounded domain with C∞

smooth boundaries. Let B+ = {Em = 1√
S(a,a)

S(z, a)fa
m | m ≥ 0} and B− =

{El = 1√
S(a,a)

G(z, ai)fa
l+1 | l ≤ −1} be the orthonormal bases for H2(bΩ) and

H2⊥(bΩ), respectively. Suppose that ϕ =
∑∞
p=−∞ αpEp ∈ L∞(bΩ). Then the

Hankel matrix [Hϕ] associated to the Hankel operator Hϕ with symbol ϕ on the
Hardy space H2(bΩ) with respect to the bases B+ and B− is given by

[Hϕ]lm =2πc3αl−mG̃a(a)S2
a(a)αl−m−1(G̃a

2
Sa)′(a)(12)
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+ 2πc3
l−m−2∑
p=−∞

αp

 G̃a(z)
−p−m+l+1

Sa(z)
−p−m+l−2

(−p−m+l)

(a)(13)

where l ≤ −1,m ≥ 0 and c =
√

2π(1− |a|2).

In particular, when the domain is the unit disc, we have much simpler form
for the Hankel matrix. Notice that if Ω = U is the unit disc, then

S(z, a) =
1

2π(1− az)
, G(z, a) =

1

2π(z − a)
, G̃a(z) = 1.

It thus follows from (10) and (11) that

B = {Ep =

√
1− |a|2

2π

(z − a)p

(1− az)p+1
| p ∈ Z}(14)

is an orthonormal basis for L2(bU).
Observing that for k ≥ 2[

(1− az)k−2
](k)
∣∣∣
z=a

= 0,

the second term (13) of the entry [Hϕ]lm above vanishes. Therefore we have
obtained the compact form of the Hankel matrix for the unit disc.

Corollary 3.9. Suppose that U is the unit disc and let B+ = {Em | m ≥ 0}
and B− = {El | l ≤ −1} be the orthonormal bases for H2(bU) and H2⊥(bU),
respectively where

Ep =

√
1− |a|2

2π

(z − a)p

(1− az)p+1

for p ∈ Z. Suppose that ϕ =
∑∞
p=−∞ αpEp ∈ L∞(bU). Then the Hankel matrix

[Hϕ] associated to the Hankel operator Hϕ with symbol ϕ on the Hardy space
H2(bU) with respect to the bases B+ and B− is given by

[Hϕ]lm = αl−m
1√
2π

1√
1− |a|2

+ αl−m−1
1√
2π

a√
1− |a|2

.(15)

Remark 3.10. Using the formula (15), we can even write the Hankel matrix for
the unit disc as a compact form via

[Hϕ] =
1√

2π(1− |a|2)
(A− + aA−L),

where

A− =


α−1 α−2 α−3 · · ·
α−2 α−3 α−1 · · ·
α−3 α−4 α−5 · · ·

...
...

...


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is the essential part of the Hankel matrix and

L =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...


is the one-way infinite lower shift matrix.
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