# GEOMETRY OF LIGHTLIKE HYPERSURFACES OF AN INDEFINITE COSYMPLECTIC MANIFOLD

Dae Ho Jin

ABSTRACT. We study the geometry of lightlike hypersurfaces M of an indefinite cosymplectic manifold  $\bar{M}$  such that either (1) the characteristic vector field  $\zeta$  of  $\bar{M}$  belongs to the screen distribution S(TM) of M or (2)  $\zeta$  belongs to the orthogonal complement  $S(TM)^{\perp}$  of S(TM) in  $T\bar{M}$ .

#### 0. Introduction

The theory of lightlike submanifolds is one of the interesting topics of differential geometry. This theory is relatively new and in a developing stage. Many authors studied the geometry of lightlike submanifolds of indefinite Sasakian manifolds. Recently several authors have studied the geometry of lightlike submanifolds of an indefinite cosymplectic manifold [10].

The purpose of this paper is to study the geometry of lightlike hypersurfaces M of an indefinite cosymplectic manifold  $\bar{M}$  subject to the conditions: (1) The characteristic vector field  $\zeta$  of  $\bar{M}$  belongs to the screen distribution S(TM) of M, or (2)  $\zeta$  belongs to the orthogonal complement  $S(TM)^{\perp}$  of S(TM) in  $T\bar{M}$ . We provide several new results on lightlike hypersurfaces M of this two types by using the structure tensors of M induced by the contact metric structure tensor J of  $\bar{M}$ .

# 1. Lightlike hypersurfaces

An odd dimensional smooth manifold  $(\bar{M}, \bar{g})$  is called a contact metric manifold [1, 8] if there exist a (1,1)-type tensor field J, a vector field  $\zeta$ , called the characteristic vector field, and its 1-form  $\theta$  satisfying

(1.1) 
$$J^{2}X = -X + \theta(X)\zeta, \ J\zeta = 0, \ \theta \circ J = 0, \ \theta(\zeta) = 1,$$
 
$$\bar{g}(\zeta,\zeta) = \epsilon, \quad \bar{g}(JX,JY) = \bar{g}(X,Y) - \epsilon \theta(X)\theta(Y),$$
 
$$\theta(X) = \epsilon \bar{g}(\zeta,X), \quad d\theta(X,Y) = \bar{g}(JX,Y), \ \epsilon = \pm 1$$

Received August 31, 2010; Revised January 7, 2011.

 $2010\ \textit{Mathematics Subject Classification}.\ \textit{Primary 53C25},\ 53C40,\ 53C50.$ 

©2012 The Korean Mathematical Society

Key words and phrases. totally umbilical, screen conformal, tangential and ascreen light-like hypersurfaces, indefinite cosymplectic manifold.

for any vector fields X, Y on  $\bar{M}$ . Then the set  $(J, \theta, \zeta, \bar{g})$  is called a contact metric structure on  $\bar{M}$ . We say that  $\bar{M}$  has a normal contact structure [8] if  $N_J + d\theta \otimes \zeta = 0$ , where  $N_J$  is the Nijenhuis tensor field of J. A normal contact metric manifold is called a cosymplectic [1, 12] for which we have

$$(1.2) \bar{\nabla}_X \theta = 0, \quad \bar{\nabla}_X J = 0$$

for any vector field X on  $\overline{M}$ . A cosymplectic manifold  $\overline{M}=(\overline{M},J,\zeta,\theta,\overline{g})$  is called an *indefinite cosymplectic manifold* [10] if  $(\overline{M},\overline{g})$  is a semi-Riemannian manifold of index  $\mu(>0)$ . For any indefinite cosymplectic manifold, apply the operator  $\overline{\nabla}_X$  to  $J\zeta=0$  for any vector field X on  $\overline{M}$  and use (1.2), we have  $J(\overline{\nabla}_X\zeta)=0$ . Apply J to this and use (1.1) and  $\theta(\overline{\nabla}_X\zeta)=0$ , we get

$$(1.3) \bar{\nabla}_X \zeta = 0.$$

A hypersurface M of  $\overline{M}$  is called a *lightlike hypersurface* if the normal bundle  $TM^{\perp}$  of M is a vector subbundle of the tangent bundle TM of M, of rank 1. Then there exists a non-degenerate complementary vector bundle S(TM) of  $TM^{\perp}$  in TM, called a *screen distribution* on M, such that

$$(1.4) TM = TM^{\perp} \oplus_{\text{orth}} S(TM),$$

where  $\oplus_{\text{orth}}$  denotes the orthogonal direct sum. We denote such a lightlike hypersurface by M = (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by  $\Gamma(E)$  the F(M) module of smooth sections of any vector bundle E over M. It is known [4] that, for any null section  $\xi$  of  $TM^{\perp}$  on a coordinate neighborhood  $\mathcal{U} \subset M$ , there exists a unique null section N of a unique vector bundle  $\operatorname{tr}(TM)$  of rank 1 in  $S(TM)^{\perp}$  satisfying

$$\bar{g}(\xi, N) = 1$$
,  $\bar{g}(N, N) = \bar{g}(N, X) = 0$ ,  $\forall X \in \Gamma(S(TM))$ .

In this case, the tangent bundle  $T\bar{M}$  of  $\bar{M}$  is decomposed as follow:

$$(1.5) T\bar{M} = TM \oplus \operatorname{tr}(TM) = \{TM^{\perp} \oplus \operatorname{tr}(TM)\} \oplus_{\operatorname{orth}} S(TM).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to the screen S(TM) respectively.

Let  $\bar{\nabla}$  be the Levi-Civita connection of  $\bar{M}$  and P the projection morphism of  $\Gamma(TM)$  on  $\Gamma(S(TM))$  with respect to the decomposition (1.4). Then the local Gauss-Weingartan formulas of M and S(TM) are given by

$$(1.6) \bar{\nabla}_X Y = \nabla_X Y + B(X, Y) N,$$

$$(1.7) \qquad \bar{\nabla}_X N = -A_N X + \tau(X) N,$$

(1.8) 
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(1.9) 
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi$$

for all  $X, Y \in \Gamma(TM)$  respectively, where  $\nabla$  and  $\nabla^*$  are the liner connections on TM and S(TM) respectively, B and C are the local second fundamental forms on TM and S(TM) respectively,  $A_N$  and  $A_{\xi}^*$  are the shape operators

on TM and S(TM) respectively and  $\tau$  is a 1-form on M. Since  $\bar{\nabla}$  is torsion-free,  $\nabla$  is also torsion-free and B is symmetric on M. From the fact that  $B(X,Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$  for all  $X, Y \in \Gamma(TM)$ , we show that B is independent of the choice of a screen distribution S(TM) and satisfies

(1.10) 
$$B(X,\xi) = 0, \quad \forall X \in \Gamma(TM).$$

The induced connection  $\nabla$  of M is not metric and satisfies

$$(1.11) \qquad (\nabla_X g)(Y, Z) = B(X, Y) \, \eta(Z) + B(X, Z) \, \eta(Y)$$

for any  $X, Y, Z \in \Gamma(TM)$ , where  $\eta$  is a 1-form such that

(1.12) 
$$\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).$$

But the connection  $\nabla^*$  on S(TM) is metric. Above two local second fundamental forms B and C are related to their shape operators by

(1.13) 
$$B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$$

(1.14) 
$$C(X, PY) = q(A_N X, PY), \quad \bar{q}(A_N X, N) = 0.$$

From (1.13), the operator  $A_{\xi}^*$  is S(TM)-valued self-adjoint on TM such that

$$A_{\varepsilon}^* \xi = 0.$$

From the equations (1.6), (1.9) and (1.10), we show that

$$\bar{\nabla}_X \xi = -A_{\xi}^* X - \tau(X) \xi, \ \forall X \in \Gamma(TM).$$

### 2. Tangential lightlike hypersurfaces

In general, the characteristic vector field  $\zeta$  belongs to  $T\bar{M}$ . Thus, from the decomposition (1.5) of  $T\bar{M}$ ,  $\zeta$  is decomposed by

(2.1) 
$$\zeta = P\zeta + a\xi + bN,$$

where a and b are smooth functions defined by  $a = \epsilon \theta(N)$  and  $b = \epsilon \theta(\xi)$ .

**Proposition 2.1** ([8]). Let M be a lightlike hypersurface of an indefinite almost contact manifold  $\bar{M}$ . Then there exists a screen S(TM) such that

$$J(S(TM)^{\perp}) \subset S(TM).$$

**Note 1.** Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle  $TM^* = TM/Rad(TM)$  considered by Kupeli [11]. Thus all screen distributions S(TM) are mutually isomorphic. For this reason, we consider only lightlike hypersurface M of  $\bar{M}$  equipped with a screen distribution S(TM) such that  $J(S(TM)^{\perp}) \subset S(TM)$ .

**Proposition 2.2.** Let M be a lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then  $\zeta$  does not belong to  $TM^{\perp}$  and  $\operatorname{tr}(TM)$ .

*Proof.* Assume that the vector field  $\zeta$  belongs to  $TM^{\perp}$  [or tr(TM)]. Then we have  $\zeta = a\xi$  and  $a \neq 0$  [or  $\zeta = bN$  and  $b \neq 0$ ]. From this we have

$$\epsilon = \bar{g}(\zeta, \zeta) = a^2 \bar{g}(\xi, \xi) = 0 \text{ [or } \epsilon = \bar{g}(\zeta, \zeta) = b^2 \bar{g}(N, N) = 0].$$

It is a contradiction to  $\epsilon = \pm 1$ . From this result we deduce our assertion.

**Note 2.** Călin [2] has proved that if the characteristic vector field  $\zeta$  is tangent to M, then it belongs to S(TM) which we assume in this paper.

**Definition 1.** A lightlike hypersurface M of an indefinite cosymplectic manifold  $\bar{M}$  is said to be a tangential lightlike hypersurface [9] of  $\bar{M}$  if the characteristic vector field  $\zeta$  of  $\bar{M}$  is tangent to M.

For any tangential M, by Note 2, we show that  $\zeta$  belongs to S(TM), i.e., a = b = 0. In this case, there exists a non-degenerate almost complex distribution  $D_o$  on M with respect to J, i.e.,  $J(D_o) = D_o$ , such that

$$S(TM) = \{J(TM^{\perp}) \oplus J(\operatorname{tr}(TM))\} \oplus_{\operatorname{orth}} D_o.$$

Now consider the 2-lightlike almost complex distribution D such that

(2.2) 
$$TM = D \oplus J(\operatorname{tr}(TM)), \quad D = \{TM^{\perp} \oplus_{\operatorname{orth}} J(TM^{\perp})\} \oplus_{\operatorname{orth}} D_o$$

and two null vector fields U and V and their 1-forms u and v such that

(2.3) 
$$U = -JN, V = -J\xi, u(X) = g(X, V), v(X) = g(X, U).$$

Denote by S the projection morphism of TM on D. By the first equation of (2.2)[denote (2.2)-1], any vector field X on M is expressed as follows

$$(2.4) X = SX + u(X)U, JX = FX + u(X)N,$$

where F is a tensor field of type (1,1) defined on M by

$$FX = JSX, \quad \forall X \in \Gamma(TM).$$

Apply J to (1.6), (1.7) and (1.16) and use (1.6), (1.7), (2.3) and the second equation of (2.4), for all  $X, Y \in \Gamma(TM)$ , we have

$$(2.5) B(X,U) = C(X,V),$$

(2.6) 
$$\nabla_X U = F(A_N X) + \tau(X) U,$$

(2.7) 
$$\nabla_X V = F(A_{\varepsilon}^* X) - \tau(X) V,$$

$$(2.8) \qquad (\nabla_X F)(Y) = u(Y)A_N X - B(X, Y)U.$$

**Theorem 2.3.** Let M be a tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then  $\zeta$  is parallel on M and S(TM). Moreover  $\zeta$  is conjugate to any vector field on M with respect to B and C.

*Proof.* Replace Y by  $\zeta$  to (1.6) and use (1.3) and  $\zeta \in \Gamma(TM)$ , we get

$$\nabla_X \zeta + B(X, \zeta)N = 0, \ \forall X \in \Gamma(TM).$$

Taking the scalar product with  $\xi$  in this equation, we have

(2.9) 
$$\nabla_X \zeta = 0, \quad B(X, \zeta) = 0, \ \forall X \in \Gamma(TM).$$

Thus  $\zeta$  is parallel on M and conjugate to any vector field on M with respect to B. Replace PY by  $\zeta$  to (1.8) and use (2.9) and  $\zeta \in \Gamma(S(TM))$ , we have

$$\nabla_X^* \zeta + C(X, \zeta) \xi = 0, \ \forall X \in \Gamma(TM).$$

Taking the scalar product with N to this equation we have

(2.10) 
$$\nabla_X^* \zeta = 0, \quad C(X, \zeta) = 0, \ \forall X \in \Gamma(TM).$$

Thus  $\zeta$  is also parallel on S(TM) and conjugate to any vector field on M with respect to C. Thus we have our assertions.

**Definition 2.** We say that M is totally umbilical [4] if, on any coordinate neighborhood  $\mathcal{U}$ , there is a smooth function  $\beta$  such that

$$(2.11) B(X,Y) = \beta g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

In case  $\beta = 0$  on  $\mathcal{U}$ , we say that M is totally geodesic.

**Theorem 2.4.** Let M be a totally umbilical tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then M is totally geodesic.

*Proof.* As M is totally umbilical, from (2.9) and (2.11), we have

$$\beta g(X,\zeta) = 0, \quad \forall X \in \Gamma(TM).$$

Replace X by  $\zeta$  in this equation and use  $g(\zeta,\zeta)=\epsilon$ , we have  $\beta=0$ .

**Definition 3.** A screen S(TM) is called *totally umbilical* [4] in M if there exists a smooth function  $\gamma$  on a neighborhood  $\mathcal{U}$  in M such that

(2.12) 
$$C(X, PY) = \gamma g(X, Y), \ \forall X, Y \in \Gamma(TM).$$

In case  $\gamma = 0$  on  $\mathcal{U}$ , we say that S(TM) is totally geodesic in M.

**Theorem 2.5.** Let M be a tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$  such that S(TM) is totally umbilical in M. Then S(TM) is totally geodesic in M.

*Proof.* Assume that S(TM) is totally umbilical in M. Replace Y by  $\zeta$  to (2.12) and use (2.10), we have

$$\gamma q(X,\zeta) = 0, \quad \forall X \in \Gamma(TM).$$

Replace X by  $\zeta$  to this equation and use  $g(\zeta, \zeta) = \epsilon$ , we obtain  $\gamma = 0$ .

**Theorem 2.6.** Let M be a tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . D is integrable on M if and only if

$$B(X, FY) = B(FX, Y), \quad \forall X, Y \in \Gamma(D).$$

Moreover, if M is totally umbilical, then D is autoparallel with respect to  $\nabla$ .

*Proof.* Take  $X, Y \in \Gamma(D)$ . Then we have  $FY = JY \in \Gamma(D)$  due to (2.4). Apply  $\bar{\nabla}_X$  to FY = JY and use (1.2), (1.6), (2.3) and (2.4), we get

$$(2.13) B(X, FY) = g(\nabla_X Y, V), \ (\nabla_X F)Y = -B(X, Y)U.$$

By straightforward calculations from (2.13), we have

$$B(X, FY) - B(FX, Y) = g([X, Y], V).$$

If D is integrable on M, then  $[X,Y] \in \Gamma(D)$  for any  $X,Y \in \Gamma(D)$ . Thus we get g([X,Y],V)=0. This implies B(X,FY)=B(FX,Y) for all  $X,Y \in \Gamma(D)$ . Conversely if B(X,FY)=B(FX,Y) for all  $X,Y \in \Gamma(D)$ , then we have g([X,Y],V)=0. Thus we get  $[X,Y] \in \Gamma(D)$  for all  $X,Y \in \Gamma(D)$ . Therefore D is integrable on M.

Moreover, if M is totally umbilical, from (2.13)-1 and Theorem 2.4, we get  $g(\nabla_X Y, V) = 0$  for all  $X, Y \in \Gamma(D)$ . This imply  $\nabla_X Y \in \Gamma(D)$  for all  $X, Y \in \Gamma(D)$ . Thus D is autoparallel with respect to  $\nabla$ .

**Theorem 2.7.** Let M be a tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then F is parallel on D with respect to  $\nabla$  if and only if D is autoparallel with respect to  $\nabla$ .

Proof. If F is parallel on D with respect to  $\nabla$ , i.e.,  $(\nabla_X F)Y = 0$  for any  $X, Y \in \Gamma(D)$ , taking the scalar product with V to (2.13)-2 with  $(\nabla_X F)Y = 0$ , we have B(X,Y) = 0 for all  $X, Y \in \Gamma(D)$ . From (2.13)-1, we have  $g(\nabla_X Y, V) = 0$ . This imply  $\nabla_X Y \in \Gamma(D)$  for all  $X, Y \in \Gamma(D)$ . Thus D is autoparallel with respect to  $\nabla$ .

Conversely if D is autoparallel with respect to  $\nabla$ , from (2.13)-1, we have

$$B(X, FY) = 0, \ \forall X, Y \in \Gamma(D).$$

For  $Y \in \Gamma(D)$ , we show that  $F^2Y = -Y + \theta(Y)\zeta$ . Replace Y by FY to B(X, FY) = 0 for all  $X \in \Gamma(D)$  and use (2.9)-2, we have B(X, Y) = 0 for any  $X, Y \in \Gamma(D)$ . Thus F is parallel on D with respect to  $\nabla$  by (2.13).

**Theorem 2.8.** Let M be a tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\overline{M}$ . If F is parallel on M with respect to  $\nabla$ , then D is parallel on M and M is locally a product manifold  $L_u \times M^{\sharp}$ , where  $L_u$  is a null curve tangent to J(tr(TM)) and  $M^{\sharp}$  is a leaf of D.

Proof. Assume that F is parallel on M with respect to  $\nabla$ . Then F is parallel on D with respect to  $\nabla$ . By Theorem 2.7, D is autoparallel with respect to  $\nabla$ . Let  $X, Y \in \Gamma(TM)$ . Apply F to (2.8) with  $(\nabla_X F)Y = 0$ , we have  $u(Y)F(A_NX) = 0$  due to FU = 0. Replace Y by U to this and use (2.3), we have  $F(A_NX) = 0$ . From this and (2.6), we get  $\nabla_X U = \tau(X)U$  for all  $X \in \Gamma(TM)$ . Thus  $J(\operatorname{tr}(TM))$  is also autoparallel with respect to  $\nabla$ . By the decomposition theorem of de Rham [3], we have  $M = L_u \times M^{\sharp}$ , where  $L_u$  is a null curve tangent to  $J(\operatorname{tr}(TM))$  and  $M^{\sharp}$  is a leaf of D.

Corollary 1. Let M be a totally umbilical tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$  such that S(TM) is totally umbilical in M. Then M is locally a product manifold  $L_u \times M^{\natural}$ , where  $L_u$  is a null curve tangent to J(tr(TM)) and  $M^{\natural}$  is a leaf of D.

*Proof.* From Theorems 2.4 and 2.5, we have B=0 and  $A_N=0$ . Thus, from (2.8), we show that  $(\nabla_X F)Y=0$  for all  $X,Y\in\Gamma(TM)$ , i.e., F is parallel on M with respect to  $\nabla$ . By Theorem 2.8, we have our theorem.

**Theorem 2.9.** Let M be a totally umbilical tangential lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$  such that S(TM) is totally umbilical. Then M is locally a product manifold  $L_{\xi} \times L_u \times L_v \times M^{\sharp}$ , where  $L_{\xi}, L_u$  and  $L_v$  are null curves tangent to  $TM^{\perp}, J(tr(TM))$  and  $J(TM^{\perp})$  respectively and  $M^{\sharp}$  is a leaf of the integrable distribution  $D_o$ .

*Proof.* By Theorem 2.6, D is autoparallel with respect to  $\nabla$ . Thus, for all  $X, Y \in \Gamma(D_o)$ , we have  $\nabla_X Y \in \Gamma(D)$ . From (1.8) and (2.13)-2, we have

(2.14) 
$$C(X, FY) = g(\nabla_X FY, N) = g((\nabla_X F)Y + F(\nabla_X Y), N)$$
$$= g(F(\nabla_X Y), N) = -g(\nabla_X Y, JN) = g(\nabla_X Y, U), r$$

due to  $FY \in \Gamma(D_o)$ . If S(TM) is totally umbilical in M, then we have C=0 due to Theorem 2.5. By (1.8) and (2.14), we get

$$g(\nabla_X Y, N) = 0$$
,  $g(\nabla_X Y, U) = 0$ ,  $\forall X \in \Gamma(TM)$ ,  $\forall Y \in \Gamma(D_o)$ .

These imply  $\nabla_X Y \in \Gamma(D_o)$  for all  $X, Y \in \Gamma(D_o)$ . Thus  $D_o$  is autoparallel with respect to  $\nabla$  such that  $TM = TM^{\perp} \oplus J(\operatorname{tr}(TM)) \oplus J(TM^{\perp}) \oplus_{\operatorname{orth}} D_o$ . Since M and S(TM) are totally umbilical, by Theorems 2.4 and 2.5, we have  $A_{\varepsilon}^* = A_N = 0$ . Thus (1.9), (2.6) and (2.7) deduce respectively

$$\nabla_X \xi = -\tau(X)\xi, \ \nabla_X U = \tau(X)U, \ \nabla_X V = -\tau(X)V, \ \forall X \in \Gamma(TM).$$

Thus  $TM^{\perp}$ ,  $J(\operatorname{tr}(TM))$  and  $J(TM^{\perp})$  are autoparallel with respect to  $\nabla$ . Thus we have  $M = L_{\xi} \times L_u \times L_v \times M^{\sharp}$ , where  $L_{\xi}$ ,  $L_u$  and  $L_v$  are null curves tangent to  $TM^{\perp}$ ,  $J(\operatorname{tr}(TM))$  and  $J(TM^{\perp})$  respectively and  $M^{\sharp}$  is a leaf of the integrable distribution  $D_o$ .

## 3. Ascreen lightlike hypersurfaces

**Definition 4.** A lightlike hypersurface M of an indefinite cosymplectic manifold  $\bar{M}$  is said to be an ascreen lightlike hypersurface [9] of  $\bar{M}$  if the vector field  $\zeta$  on  $\bar{M}$  belongs to  $S(TM)^{\perp} = TM^{\perp} \oplus \operatorname{tr}(TM)$ .

For any ascreen M, the characteristic vector field  $\zeta$  is decomposed by

$$\zeta = a\xi + bN.$$

Then, by Proposition 2.2, we show that  $a \neq 0$  and  $b \neq 0$ .

**Definition 5.** A lightlike hypersurface M is called *screen conformal* [5, 6, 7] if there exists a non-vanishing smooth function  $\varphi$  on a neighborhood  $\mathcal{U}$  in M such that  $A_N = \varphi A_{\varepsilon}^*$ , or equivalently,

(3.2) 
$$C(X, PY) = \varphi B(X, Y), \ \forall X, Y \in \Gamma(TM).$$

**Note 3.** For a screen conformal M, since C is symmetric on S(TM), S(TM) is integrable and M is locally a product manifold  $L_{\xi} \times M^*$  where  $L_{\xi}$  is a lightlike curve tangent to  $TM^{\perp}$  and  $M^*$  is a leaf of S(TM) [4].

**Theorem 3.1.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then M is screen conformal with  $\varphi = -\frac{a}{h}$ .

*Proof.* Apply  $\bar{\nabla}_X$  to (3.1) and use (1.3), (1.7) and (1.16), we have

$$aA_{\xi}^*X + bA_NX = \{Xa - a\tau(X)\}\xi + \{Xb + b\tau(X)\}N, \ \forall X \in \Gamma(TM).$$

Taking the scalar product with  $\xi$  and N by turns we have

(3.3) 
$$A_N X = \varphi A_{\xi}^* X, \ X a = a \tau(X), \ X b = -b \tau(X), \ \forall X \in \Gamma(TM),$$

where  $\varphi = -\frac{a}{b}$ . Thus M is screen conformal with  $\varphi = -\frac{a}{b}$ .

From Theorem 3.1 and Note 3, we have the following result:

**Theorem 3.2.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then S(TM) is integrable and M is locally a product manifold  $L_{\xi} \times M^*$  where  $L_{\xi}$  is a lightlike curve tangent to the normal bundle  $TM^{\perp}$  and  $M^*$  is a leaf of S(TM).

The induced Ricci type tensor  $R^{(0,2)}$  of M is defined by

$$R^{(0,\,2)}(X,Y)=\operatorname{trace}\{Z\to R(Z,X)Y\},\ \forall\,X,\,Y\in\Gamma(TM).$$

In general, the tensor field  $R^{(0,2)}$  is not symmetric [4, 5, 7]. A tensor field  $R^{(0,2)}$  of lightlike hypersurfaces M is called its *induced Ricci tensor* [5] of M if it is symmetric. A symmetric  $R^{(0,2)}$  tensor will be denoted by Ric.

**Definition 6.** We define the connection  $\nabla^{\perp}$  on the transversal bundle  $\operatorname{tr}(TM)$  by  $\nabla^{\perp}_X N = \tau(X) N$  for all  $X \in \Gamma(TM)$ . We say that  $\nabla^{\perp}$  is the *transversal connection* of M. Define the curvature tensor  $R^{\perp}$  of  $\operatorname{tr}(TM)$  by

$$R^{\perp}(X,Y)N = \nabla_X^{\perp}\nabla_Y^{\perp}N - \nabla_Y^{\perp}\nabla_X^{\perp}N - \nabla_{[X,Y]}^{\perp}N$$

for all  $X, Y \in \Gamma(TM)$ . If  $R^{\perp}$  vanishes identically, then the transversal connection  $\nabla^{\perp}$  of M is said to be *flat* (or *trivial*) [8].

**Theorem 3.3** ([8]). Let M be a lightlike hypersurface of a semi-Riemannian manifold  $(\bar{M}, \bar{g})$ . The following assertions are equivalent:

- (i) Each 1-form  $\tau$  is closed, i.e.,  $d\tau = 0$ , on any  $\mathcal{U} \subset M$ .
- (ii) The Ricci type tensor  $R^{(0,2)}$  is an induced Ricci tensor of M.
- (iii) The transversal connection of M is flat, i.e.,  $R^{\perp} = 0$ .

**Theorem 3.4.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then  $R^{(0,2)}$  is an induced symmetric Ricci tensor of M and the transversal connection  $\nabla^{\perp}$  of M is flat.

*Proof.* Apply the operator  $\nabla_X$  to  $Ya = a\tau(Y)$  and use (3.3), we have

$$XYa = aX(\tau(Y)) + a\tau(X)\tau(Y), \quad \forall X, Y \in \Gamma(TM).$$

From this equation we have the following result:

$$2a d\tau(X,Y) = \{XY - YX - [X,Y]\}a = 0, \quad \forall X, Y \in \Gamma(TM).$$

Taking the product with  $b \neq 0$  to this equation and using  $2ab = \epsilon$ , we have  $d\tau(X,Y) = 0$ . Thus, by Theorem 3.3, we have our assertion.

From now on we may assume that  $\epsilon=1$  without loss of generality. In this case, substituting (3.1) into  $g(\zeta,\zeta)=1$ , we have 2ab=1. Consider the local unit timelike vector field  $V^*$  on M and its 1-form  $v^*$  defined by

(3.4) 
$$V^* = -b^{-1}J\xi, \quad v^*(X) = -g(X, V^*), \quad \forall X \in \Gamma(TM).$$

Let  $U^* = -a^{-1}JN$ . Then  $U^*$  is a unit timelike vector field on S(TM) such that  $g(V^*, U^*) = 1$ . Apply J to (3.1) and use (1.1) and 2ab = 1, we have

$$0 = aJ\xi + bJN = -(V^* + U^*)/2$$
, i.e.,  $U^* = -V^*$ 

From this equation we deduce the result:  $J(TM^{\perp}) = J(\operatorname{tr}(TM))$ . From this fact, the tangent bundle TM of M is decomposed as follow:

$$(3.5) TM = TM^{\perp} \oplus_{\text{orth}} S(TM) = TM^{\perp} \oplus_{\text{orth}} \{J(TM^{\perp}) \oplus_{\text{orth}} D^*\},$$

where  $D^*$  is a non-degenerate and almost complex distribution on M with respect to J, otherwise S(TM) is degenerate.

Denote by Q the projection morphism of TM on  $D^*$ . Then, using (3.5) and  $JV^* = a\xi - bN$ , any vector field X on M is expressed as follows

(3.6) 
$$X = QX + v^*(X)V^* + \eta(X)\xi,$$

(3.7) 
$$JX = fX + av^*(X)\xi - b\eta(X)V^* - bv^*(X)N,$$

where f is a tensor field of type (1,1) defined on M by

$$fX = JQX, \quad \forall X \in \Gamma(TM).$$

Apply J to (1.16) and use (1.2), (1.6), (1.13), (3.3), (3.4) and (3.7), we get

$$\nabla_X V^* = 2a\{f(A_{\xi}^* X) - aB(X, V^*)\xi\}, \ \forall X \in \Gamma(TM).$$

**Theorem 3.5.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then the following assertions are equivalent:

- (i)  $V^*$  is parallel with respect to the induced connection  $\nabla$  on M.
- (ii) M is totally geodesic.
- (iii) S(TM) is totally geodesic on M.

Proof. (i)  $\Leftrightarrow$  (ii). If  $V^*$  is parallel with respect to  $\nabla$ , then, taking the scalar product with N to (3.8), we have  $B(X,V^*)=0$ . Thus we have  $f(A_{\xi}^*X)=0$  for all  $X \in \Gamma(TM)$ . From this result and (3.7), we obtain  $J(A_{\xi}^*X)=0$  for any  $X \in \Gamma(TM)$ . Apply J in this equation and use (1.1) and the fact  $\theta(A_{\xi}^*X)=0$ , we have  $A_{\xi}^*X=0$  for all  $X \in \Gamma(TM)$ . Thus M is totally geodesic. Conversely if M is totally geodesic, then, by (3.8), we have  $\nabla_X V^*=0$  for all  $X \in \Gamma(TM)$ .

(ii)  $\Leftrightarrow$  (iii). From (3.2), we show that  $A_{\xi}^*X = 0 \iff A_NX = 0$  for all  $X \in \Gamma(TM)$  due to  $\varphi \neq 0$ . Thus we have our assertions.

Take  $Y \in \Gamma(D^*)$ . Then we have  $fY = JY \in \Gamma(D^*)$  due to (3.7). Apply J to (1.6) and use this, (1.2), (1.6), (3.2), (3.4) and (3.7), we have

$$(3.9) \qquad (\nabla_X f)Y = -ag(\nabla_X Y, V^*)\xi + 2aB(X, Y)V^*,$$

$$(3.10) B(X, fY) = bq(\nabla_X Y, V^*), \ \forall X \in \Gamma(TM)$$

for all  $X \in \Gamma(TM)$ . By the procedure same as for Theorem 2.6 and Theorem 2.7 and by using (3.9) and (3.10), instead of (2.13)-1 and (2.13)-2, and S(TM) is integrable due to (3.2), the following two theorems hold:

**Theorem 3.6.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ .  $D^*$  is integrable if and only if we have

$$B(X, fY) = B(fX, Y), \quad \forall X, Y \in \Gamma(D^*).$$

Moreover, if M is totally geodesic, then  $D^*$  is autoparallel with respect to  $\nabla$ .

**Theorem 3.7.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . Then f is parallel on  $D^*$  with respect to  $\nabla$  if and only if  $D^*$  is autoparallel with respect to  $\nabla$ .

**Theorem 3.8.** Let M be an ascreen lightlike hypersurface of an indefinite cosymplectic manifold  $\bar{M}$ . If M is totally geodesic, then M is locally a product manifold  $L_{\xi} \times L_{V^*} \times M^{\natural}$ , where  $L_{\xi}$  and  $L_{V^*}$  are null and timelike curves tangent to  $TM^{\perp}$  and  $J(TM^{\perp})$  respectively and  $M^{\natural}$  is a leaf of  $D^*$ .

*Proof.* Assume that M is totally geodesic. Then, from Theorem 3.6, we show that  $D^*$  is autoparallel with respect to  $\nabla$ . From (1.9) and (3.8), we have  $\nabla_X \xi = -\tau(X) \xi$  and  $\nabla_X V^* = 0$ . Thus  $TM^{\perp}$  and  $J(TM^{\perp})$  are also autoparallel with respect to  $\nabla$ . Thus we have  $M = L_{\xi} \times L_{V^*} \times M^{\natural}$ , where  $L_{\xi}$  and  $L_{V^*}$  are lightlike and timelike curves tangent to  $TM^{\perp}$  and  $J(TM^{\perp})$  respectively and  $M^{\natural}$  is a leaf of the integrable distribution  $D^*$ .

#### References

- [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, 2002
- [2] C. Călin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
- [3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328–344.

- [4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [5] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
- [6] \_\_\_\_\_\_, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form,
  J. Geom. Phys. 60 (2010), no. 12, 1881–1889.
- [7] D. H. Jin, Screen conformal lightlike real hypersurfaces of an indefinite complex space form, Bull. Korean Math. Soc. 47 (2010), no. 2, 341–353.
- [8] \_\_\_\_\_\_, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. Pure Appl. Math. 41 (2010), no. 4, 569–581.
- [9] \_\_\_\_\_\_, Special half lightlike submanifolds of an indefinite Sasakian manifold, to appear in Bull. Korean Math. Soc.
- [10] S. K. Kim, Lightlike submanifolds of indefinite cosymplectic manifolds, Ph. D. Thesis, Ulsan University, Korea, 2007.
- [11] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Acad. Publishers, Dordrecht, 1996.
- [12] G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geometry 4 (1970), 237–244.

DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY

Gyeongju 780-714, Korea

 $E ext{-}mail\ address: jindh@dongguk.ac.kr}$