• Title/Summary/Keyword: organic porous materials

Search Result 120, Processing Time 0.027 seconds

Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique (유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성)

  • Kim, Youn Cheol;Bang, Moon-Soo;Lee, Sang Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at $140^{\circ}C$. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and $^{13}C$ solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At $800^{\circ}C$ for 2 h, the porous powders transformed to the crystalline $ZrO_2-Al_2O_3$ composites.

Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution

  • Kim, Dongyoung;Park, Soo-Jin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, we present a more electrochemically enhanced electrode using activated carbon (AC)-sulfur (S) composite materials, which have high current density. The morphological and micro-structure properties were investigated by transmission electron microscopy. Quantity of sulfur was measured by thermogravimetric analysis analysis. The electrochemical behaviors were investigated by cyclic voltammetry. As a trapping carbon structure, AC could provide a porous structure for containing sulfur. We were able to confirm that the AC-S composite electrode had superior electrochemical activity.

Synthesis of an Ordered Porous SiCN Ceramic Film by Self-Assembly of Inorganic-Organic Diblock Copolymer

  • Nghiem Quoc Dat;Kim Dong-Pyo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.296-296
    • /
    • 2006
  • Highly temperature stable mesoporous materials have excellent properties and potential applications. Here we show a novel poly(vinyl)silazane-block-polystyrene diblock copolymer, which was synthesized by controlled/living free radical polymerization with reversible addition fragmentation chain transfer (RAFT) route. The obtained diblock copolymer occurs the phaseseparation on the nanoscale to form ordered nanostructure, which is converted to mesoprorous ceramic after heating at 800oC. This route demonstrates the preparation of highly temperature stable mesoporous silicon carbon nitrides (SiCN) ceramic film directed from highly cross-linking poly(vinyl)silazane blocks with high ceramic yield, which is different from previous pathway.

  • PDF

Photocatalytic Membrane Reactor for VOC Decomposition Using Pt-Modified Titanium Oxide Membranes

  • Toshinori Tsuru;no, Takehiro-Kan;Tomohisa Yoshioka;Masashi Asaeda
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.39-42
    • /
    • 2004
  • Ceramic membranes have attracted a great attention because they have excellent resistance to most organic solvents and can be used over a wide temperature range. Especially, titania (titanium oxide, TiO$_2$) shows excellent chemical resistance and can be used both acidic and alkali solutions, and therefore, titania is one of the most promising materials for the preparation of porous membranes; titania membranes having pore sizes in the range of nanofiltration (NF) to ultrafiltration (UF) membrane have been prepared by the sol-gel process (Tsuru 2001).(omitted)

  • PDF

Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film (SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석)

  • Han, Doug-Young;Park Klepeis, Jae-Hyun;Lee, Yoon-Joo;Lee, Jung-Hyun;Kim, Soo-Ryong;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.

Characteristics of Physical and Adsorption of Korean Traditional Charcoal (우리나라 전통 숯의 물리.화학적 특성)

  • Kim, Joon-Tae;Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.77-86
    • /
    • 2006
  • The water purification was very important in Korea which has not sufficient water resource and while adsorption method among the various methods to eliminate the water pollutants has been widely used by activated carbon. This study was conducted the basic experiment for hall distribution, pH, conductivity, electronic microscope, cation exchange and inorganic materials the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. As a result of observing Korean traditional charcoal with electronic microscope, it was found that it has porous structure, oak charcoal has circular structure, pine charcoal has square structure and bamboo charcoal has hexagonal structure, which has high void fraction per unit area because of its thin cell wall structure. As a result of experimenting hall distribution, hall distribution of bamboo high temperature charcoal is high as 0.269cc/g and has the greatest inorganic contents and cation exchange capacity(CEC) which are the important factor of chemical adsorption.

Polymer Light-Emitting Diode with Controlled Nano-Structure

  • Park, O-Ok;Lim, Yong-Taik;Park, Jong-Hyeok;Lee, Ho-Chul;Kim, Tae-Ho;Lee, Hang-Ken
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.194-194
    • /
    • 2006
  • Polymer light-emitting diodes(PLEDs) have great potential application in large area flat panel displays and general lighting so intense academic and industrial research, and impressive scientific and technological progress has been achieved in this field. However, the efficiency and stability of PLEDs till need to be improved in order to fully realize the advantages of low cost and ease of fabrication provided by organic materials. Here, we report our effort to enhance the PLED' s performance in two approaches : 1) Utilizing nano-structured materials such as nano particles, clay, nano porous silica in active layer 2) Modifying the device structure in nano scale to improve not only the device efficiency but also its stability.

  • PDF

A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications (고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용)

  • Oh, Hyunchul;Lee, Young Sei;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2017
  • In the present review, we provide an overview of the research trend of anodic $TiO_2$ nanostructures. To date, most anodic $TiO_2$ nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized $TiO_2$ nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/$K_2HPO_4$ electrolyte. This nanostructure consists of a strongly interlinked network of nanosized $TiO_2$, and thus provides a considerably higher specific surface area than that of using anodic $TiO_2$ nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.

Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group (작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.97-108
    • /
    • 2021
  • In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.