Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.2.126

Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution  

Kim, Dongyoung (Department of Chemical and Biochemical Engineering, Pusan National University)
Park, Soo-Jin (Dept. of Chemistry, Inha University)
Jung, Yongju (Dept. of Applied Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Carbon letters / v.14, no.2, 2013 , pp. 126-130 More about this Journal
Abstract
In this study, we present a more electrochemically enhanced electrode using activated carbon (AC)-sulfur (S) composite materials, which have high current density. The morphological and micro-structure properties were investigated by transmission electron microscopy. Quantity of sulfur was measured by thermogravimetric analysis analysis. The electrochemical behaviors were investigated by cyclic voltammetry. As a trapping carbon structure, AC could provide a porous structure for containing sulfur. We were able to confirm that the AC-S composite electrode had superior electrochemical activity.
Keywords
activated carbon; nanocomposite; lithium-sulfur; electrochemical;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Orlikova B, Diederich M. Power from the garden: plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem, 19, 2061 (2012). http://dx.doi.org/10.2174/092986712800228998.   DOI
2 Kolosnitsyn VS, Karaseva EV. Lithium-sulfur batteries: problems and solutions. Russ J Electrochem, 44, 506 (2008). http://dx.doi. org/10.1134/S1023193508050029.   DOI
3 Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 11, 2644 (2011). http://dx.doi.org/10.1021/nl200658a.   DOI   ScienceOn
4 Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/ carbon nanocomposite material for high-energy lithium battery. Chem Mater, 21, 4724 (2009). http://dx.doi.org/10.1021/cm902050j.   DOI   ScienceOn
5 Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett, 11, 4462 (2011). http:// dx.doi.org/10.1021/nl2027684.   DOI   ScienceOn
6 Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfurimpregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater, 23, 5641 (2011). http:// dx.doi.org/10.1002/adma.201103274.   DOI   ScienceOn
7 Liang J, Jiao Y, Jaroniec M, Qiao SZ. Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed, 51, 11496 (2012). http://dx.doi.org/10.1002/anie.201206720.   DOI   ScienceOn
8 Ahmadi R, Amini MK. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation. Int J Hydrogen Energy, 36, 7275 (2011). http://dx.doi. org/10.1016/j.ijhydene.2011.03.013.   DOI   ScienceOn
9 Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF. Preparation and performance of a core-shell carbon/sulfur material for lithium/ sulfur battery. Electrochim Acta, 55, 7010 (2010). http://dx.doi. org/10.1016/j.electacta.2010.06.019.   DOI   ScienceOn
10 Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
11 Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47, 493 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.031   DOI   ScienceOn
12 Park SE, Park SJ, Kim S, Preparation and capacitance behaviors of cobalt oxide/graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.130.   DOI   ScienceOn
13 Shin D, Bae SK, Yan C, Kang JM, Rye JC, Ahn JH, Hong BH. Synthesis and applications of graphene electrodes. Carbon Lett, 13, 1 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.001.   DOI   ScienceOn
14 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI   ScienceOn
15 Lu Y, Wang Y, Zou Y, Jiao Z, Zhao B, He Y, Wu M. Macroporous $Co_3O_4$ platelets with excellent rate capability as anodes for lithium ion batteries. Electrochem Commun, 12, 101 (2010). http://dx.doi. org/10.1016/j.elecom.2009.10.046.   DOI   ScienceOn
16 Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Rapid microwave-assisted synthesis of graphene nanosheet/$Co_3O_4$ composite for supercapacitors. Electrochim Acta, 55, 6973 (2010). http://dx.doi.org/10.1016/j.electacta.2010.06.081.   DOI   ScienceOn
17 Park S, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4$/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). http://dx.doi. org/10.1016/j.electacta.2012.11.075.   DOI   ScienceOn
18 Lebegue E, Baranton S, Coutanceau C. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J Power Sources, 196, 920 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.08.107.   DOI   ScienceOn
19 Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Mullen K. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem, 3, 236 (2010). http://dx.doi.org/10.1002/cssc.200900106.   DOI
20 Misoon O, Seok K. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). http:// dx.doi.org/10.1016/j.electacta.2011.10.058.   DOI   ScienceOn