• Title/Summary/Keyword: organic pepper

Search Result 242, Processing Time 0.027 seconds

Monoculture and Mixture Effects of Green Manure Crops on Soil Quality, Weed Suppression and Organic Red-pepper Production

  • Lee, Sang-Min;Jung, Jung-Ah;Choi, Bong-Su;Lee, Yong-Hwan;Lee, Jong-Sik;Song, Beom-Heon;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.581-590
    • /
    • 2011
  • Organic farming is rapidly expanding worldwide. Crop growth in organic systems greatly depends on the functions performed by soil microbes, and nutrient supply weed suppression by green manure crops input. Four red-pepper production systems were compared: 1) bare ground (conventional system); 2) hairy vetch monoculture; 3) rye monoculture; and 4) hairy vetch-rye mixture. Soil inorganic N reached the peak at 30 DAI and hairy vetch monoculture was the highest ($192mg\;kg^{-1}$) and soil total carbon was fluctuated sporadically during the experiment. Carbohydrate and phenolic compounds in soil kept significantly higher in green manure crops systems from 10 DBI to 30 DAI, however the level was the maximum at 10 DBI (carbohydrate) and 30 DAI (phenolic comounds). Incorporation of green manure crops residue enhanced soil microbial biomass C and N throughout the growing season except that MBN in rye was reduced after incorporation. Green manure crops systems suppressed weed occurrence and, in particular, it was prominent in rye monoculture. Mineral elements composition and production in red-pepper fruits were markedly decreased in green manure crops systems although hairy vetch monoculture has come close to bare ground (NPK-applied). Therefore, it was suggested that higher biomass production should be performed not only to improve soil quality and suppress weeds but to yield suitable red-pepper fruits in green manure crops-based organic farming.

Effect of Inoculation of Methylobacterium oryzae on the Growth of Red Pepper at Different Organic Fertilizer Levels (다양한 유기질비료 수준에서 Methylobacterium oryzae CBMB20의 처리에 따른 고추의 생육 평가)

  • Chauhan, Puneet Singh;Lee, Gil-Seung;Lee, Min-Kyoung;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.506-513
    • /
    • 2010
  • Plant growth promoting ability of Methylobacterium oryzae CBMB20 was evaluated under different levels of organic fertilizer application on red pepper plants in a pot experiment. Oil cake as an organic N fertilizer was applied at the rates of 70, 85, 100 and 120% of the conventional recommended level. Each treatment was further treated with or without M. oryzae CBMB20 inoculation. The recommended amount of compost for red pepper was added in all the treatments. Results revealed that plant height, dry biomass and fruit yield were enhanced in increasing order as the rate of fertilization increased. Overall plant growth was improved due to the inoculation of M. oryzae CBMB20 and red pepper fruit yield was also increased by 10-35% in the plants inoculated with M. oryzae CBMB20 at different rates of organic fert1izer application. Total methylotrophic bacterial population in rhizosphere soil measured at the time of harvest was significantly higher in M. oryzae CBMB20 inoculated treatments. The growth promoting effect of M. oryzae CBMB20 found in red pepper could be due to the effective colonization of the bacteria in the rhizosphere and its ability of enhancing nutrient availability and producing plant growth hormones. With the plant growth promoting effect of M. oryzae CBMB20, the rate of organic fertilizer application can be reduced without any significant decreases in biomass production and yield of red pepper.

Development of Naturally Degradable "Rice Polymer" For Organic Weed Management of Red Pepper and Rice

  • Kang, C.K.;Nam, H.S.;Lee, Y.K.;Lee, S.B.;Lee, B.M.;Oh, Y.J.;Jee, H.J.;Hong, M.K.;Jung, K.W.;Lee, Y.J.;Choi, Y.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.119-122
    • /
    • 2011
  • Among the developed bio-degradable polymer films as compared with transparent film(White), black polymer film was significantly more effective for controlling weeds in red pepper. Also, we found that white and black polymer mulching had 81.8% and 97.9% of managing weed controlling effects in rice, respectively. Compared to non-mulched rice paddy with water supply, the non-mulched rice paddy without any water supply has stopped its growth at 41 days after transplanting, while polymer-mulched rice paddy without water supply had about 60% of normally growing rice plants. This shows the polymer treatment has a remarkable effect on water and power saving, solution of herbicidal resistance, avoidance of herbicidal influence to eco-system etc. When the naturally decomposing polymer was used, a temperature was elevated as high as $4.7^{\circ}C$ on maximum and $2.6^{\circ}C$ on average. Also the naturally decomposing polymer accelerated rooting by 7 days and lowered a stress level from transplanting. The weed control effect mulched by polymer was remarkable as 98.7%. The polymer now, after 294 days treated on the rice paddy, has been completely decomposed.

Changes of Soluble Solid Content in Red Pepper by Different Extraction Conditions (추출 조건에 따른 고추 수용액의 가용성 성분의 변화)

  • Lee, Hyun-Duck;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.11 no.3
    • /
    • pp.385-392
    • /
    • 1996
  • The soluble solid of red pepper was extracted by water in order to investigate changes of soluble solid content by different extraction temperature $(4{\sim}90^{\circ}C)$ and time $(1/2{\sim}3\;hrs)$, and the contents of carotenoid, capsaicinoids, free sugar, organic acid, free amino acid in soluble solid were measured. Most of soluble solid in red pepper was extracted within the first 2 hrs and $93{\sim}98%$ of total soluble solid was extracted during the first 30 min. The contents of carotenoid increased by increasing extraction time and temperature, but decreased by increasing extraction time at $60^{\circ}C$ and $90^{\circ}C$. ${\beta}$-carotene content was sharply decreased after 2 hrs at $90^{\circ}C$. The content of capsaicinoid was sharply increased between 1 hr and 2 hr. Fructose and glucose in red pepper were extracted in the range of $83.8%{\sim}96.4%$ and the contents of free sugar gradually increased by increasing extraction time and temperature. The content of organic acid was gradually increased by increasing extraction time and temperature and the greatest amount of organic acid was extracted during the first 30 min of extraction time. The content of free amino acid was decreased by increasing extraction temperature.

  • PDF

Effect of Chemical Fertilizer and Compost on Soil Physicochemical Properties, Leaf Mineral Content, Yield and Fruit Quality of Red Pepper (Capsicum annuum L.) in Open Field

  • Lee, Seong Eun;Park, Jin Myeon;Park, Young Eun;Lim, Tae Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.683-688
    • /
    • 2015
  • Nowadays, sustainable and environment-friendly agriculture has become an important issue all around the world, and repeated applications of mineral and/or organic fertilizer will probably affect mineral nutrient dynamics in soil in the long term but only a limited number of observations are available. This study was carried out to investigate whether there is any influence of different fertilizer management for red pepper (Capsicum annuum L.) cultivation on soil physicochemical properties, leaf mineral content, yield and fruit quality in the aspect of long-term practice in open field condition. NPK, NPK+compost, compost only, and unfertilized control plot were included in the treatments. The application of chemical fertilizer and/or compost repeated annually for 17 years from 1994 to 2011. Soil organic matter content was higher in compost treatments than in no-manure treatments. Available phosphate and the yield of red pepper were highest in NPK+compost treatment followed by NPK (chemical fertilizer), compost, and control. The results indicate that in the long term, nitrogen supply is still needed for increasing red pepper yield, but reduction in the use of chemical fertilizer could be also possible with the proper application of compost.

Long-term Effects of Chemical Fertilizer and Compost Applications on Yield of Red Pepper and Soil Chemical Properties

  • Park, Young-Eun;Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.111-118
    • /
    • 2018
  • A field experiment was conducted to investigate the effect of long-term (21-year) fertilizer and compost treatments on the yield of red pepper and chemical properties in top-dong, Suwon. Six treatments were chosen for this work: No fertilization (No fert.), NPK fertilizers (NPK), NPK and compost (NPK+Compost), NP and compost (NP+Compost), NK and compost (NK+Compost), PK and compost (PK+Compost). The yield of red pepper for 21 years indicated the significant differences among the No fertilization, the PK+Compost, and other treatments. The relative yield index was 13% and 59% respectively, for the No fertilization and the PK+Compost if the average yield of red pepper for the NPK regards $20,048kg\;ha^{-1}$ as the yield index with 100%. Soil organic matter at the compost applied treatments significantly increased compared with the No fert. and the NPK. The average increase rates of soil organic matter by applying the compost ranged from 0.69 to $0.73g\;kg^{-1}\;yr^{-1}$. Available phosphate content in soil appeared the significant increase all treatments excluding the No fert. It is estimated that the available phosphate in soil was increased by $7.0mg\;kg^{-1}\;yr^{-1}$ by applying compost and $14.2mg\;kg^{-1}\;yr^{-1}$ by applying P fertilizer. Application of K fertilizer or the compost alone, the NPK, the NP+Compost, continuously caused soil K depletion whereas K fertilization plus the compost maintained at a constant level of exchangeable K. The results indicated that the addition of compost to NPK fertilizer is recommended for the maximum stable yield for red pepper and enhancement of organic matter though it is also needed for adjusting of P and K fertilization.

Production and Economic Factor Analysis for the Low Input Sustainable Agriculture(LISA) of Red Pepper (고추의 LISA 模型開發을 위한 技術${\cdot}$經濟的 要因分析)

  • Hwang, Young-Hyun;Choi, Jung;Kim, Chung-Sil;Kim, Byung-Do
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.35-48
    • /
    • 1998
  • The total amount of dry matter for the green manure crops was great wheat> rye> barley> Italian ryegrass in that order. The green manure crope were verified to have the reducing effect of injury of successive croppingin peper, mainly reducing the occurance of the most important pepper disease, Phytophthora capsisi, and enhancing the pepper quality in the fruit length and diameter. The direct seeding using current commercial pepper variety was proved as not economical one. In the first year of compost application, the growth and yield of red pepper were rather somewhat decreasing compared with those of check plot applied with organic fertilizers. compst application increased the content of organic matter in soil, which suggested compost could be applied for the sustainable purposes. In preference analysis about taking the new technique, the smaller farmer's cultivation area the more they wanted to accept the LISA farming, compared with the conventional one, could be possible to save 12% in the inorganic fertilizer expenses but wasted 412% ant 163% in both organic fertilizer and operator labor expenses, respectively. At the same time, the LISA decreased 15% in production cost but increased 225% and 139% in organic fertilizer quantity and operator labor hours. Since there was a great deal of difference in technological and economic factors from two farming methods, LISA multi-goal decision modeling is further required.

  • PDF

Effect of Trichoderma sp. GL02 on alleviating Drought Stress in Pepper Plants (Trichoderma sp. GL02에 의한 고추 식물의 건조 스트레스 완화 효과)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.417-430
    • /
    • 2020
  • Drought stress is one of major environmental stresses in plants; this leads to reduce plant growth and crop yield. In this study, we selected fungal isolate for mitigating drought stress in pepper plants. To do this, 41 fungi were isolated from rhizosphere or bulk soils of various plants in Jeju, Gangneung, Hampyeong in Korea. Out of 41 isolates, we screened two isolates without phytotoxicity through seed germination of tomato, pepper, and cabbage treated with fungal spores; through following plant assay, we selected GL02 as a candidate for alleviating drought stress in pepper plants. As a result of greenhouse test of pepper plants in drought condition, the stomatal conductance on leaves of pepper plants treated with GL02 was increased, whereras the malondialdehyde (MDA) and electrolyte leakage were decreased compared to that in control plants. When stressed plants were rewatered, stomatal conductance of the plants treated with GL02 was increased; the electrolyte leakage was decreased. Based on internal transcribed spacer (ITS) sequencing analysis, isolate GL02 was belonging to genus Trichoderma. Taken together, drought stress in pepper plants treated with GL02 was alleviated, when it was rewatered after drought-stressed, the plants could be recovered effectively. Therefore, Trichoderma sp. GL02 could be used as a bio-fertilizer to alleviate drought stress in pepper plants.

Combined Application of Bacillus sp. JJ2-01 and Garlic Oil for Controlling Sclerotium rolfsii in Pepper Plants (Bacillus sp. JJ2-01과 마늘 오일 혼합처리에 의한 고추 흰비단병 억제 효과)

  • Moon, Hye Jeong;Ju, Ho-Jong;Ahn, Seong-Ho;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.3
    • /
    • pp.409-422
    • /
    • 2022
  • Southern blight caused by Sclerotium rolfsii is a serious soilborne disease in economically important crops including pepper. In this study, we conducted a selection of antagonistic bacterial strains and organic materials to biologically control the disease. Out of 39 strains isolated from soils at Jinju in Korea, strain JJ2-01 showed the highest mycelial growth inhibition; garlic oil among various organic materials significantly reduced disease incidence and severity. When a combination of strain JJ2-01 and garlic oil, or each was drenched into the pepper plants, combined treatment and garlic oil significantly suppressed the disease development, however, acid phosphatase activity in garlic oil-treated plants decreased. In the case of combined treatment, the soil activities did not affect by treatment, while soil urease activity was significantly increased by the combined treatment. Therefore, given soil quality and health for sustainable agriculture, the combination of strain JJ2-01 and garlic acid was an effective application for environmental-friendly control of Southern blight in pepper plants.

Effect of "Animal Amino Acid's Bestamin" on the Physicochemical Properties of Soil, the Growth and Fruit Quality of Hot Pepper (Capsicum annuum L.) (동물성 아미노산 시용이 토양이화학성과 노지고추 생육 및 품질에 미치는 영향)

  • Chae, Yun-Seok;Hong, Jeum-Kyu;Lee, Sang-Woo
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.501-511
    • /
    • 2011
  • This study was carried out to evaluate the effect of applying levels of Bestamin, animal amino acid, on growth and quality of hot pepper and physicochemical properties of soil. Treatment was given with 200, 400, 800, 1600kg per 10a to control of Bestamin, difference of physicochemical properties was lower than Bestamin, and $P_2O_5$ seems to be reduced, also $K^+$, $Ca^{++}$ were obviously low compared to the control. The content of $NO_{3-}N$ was low compared to control at the Bestamin treated plot. Plant height was longest at 800 treatment and main stem length, main stem weigh and the number of leaves were significantly different with 400 and 800 treatment. No difference was found among the fruit weight, length, diameter in first harvest, but there was significantly different at control of 2nd, 3rd harvest and more increased than 400 and 800 treatment. Fruit weight per plant was the heaviest at 400 and 800 treatment, and the number of fruit was no difference at red pepper but increased with 400 and 800 at green pepper, and yield per 10a was significantly increased to 4503.6kg and 4582.5kg, respectively. Nitrogen in mesophyll accumulation content was obviously reduced at Bestamin treatment compared to control, and amino acid was reduced with control.