DOI QR코드

DOI QR Code

Combined Application of Bacillus sp. JJ2-01 and Garlic Oil for Controlling Sclerotium rolfsii in Pepper Plants

Bacillus sp. JJ2-01과 마늘 오일 혼합처리에 의한 고추 흰비단병 억제 효과

  • 문혜정 (국립농업과학원 농업미생물과, 전북대학교 농생물학과) ;
  • 주호종 (전북대학교 농생물학과) ;
  • 안성호 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 상미경 (국립농업과학원 농업미생물과)
  • Received : 2022.05.25
  • Accepted : 2022.07.11
  • Published : 2022.08.31

Abstract

Southern blight caused by Sclerotium rolfsii is a serious soilborne disease in economically important crops including pepper. In this study, we conducted a selection of antagonistic bacterial strains and organic materials to biologically control the disease. Out of 39 strains isolated from soils at Jinju in Korea, strain JJ2-01 showed the highest mycelial growth inhibition; garlic oil among various organic materials significantly reduced disease incidence and severity. When a combination of strain JJ2-01 and garlic oil, or each was drenched into the pepper plants, combined treatment and garlic oil significantly suppressed the disease development, however, acid phosphatase activity in garlic oil-treated plants decreased. In the case of combined treatment, the soil activities did not affect by treatment, while soil urease activity was significantly increased by the combined treatment. Therefore, given soil quality and health for sustainable agriculture, the combination of strain JJ2-01 and garlic acid was an effective application for environmental-friendly control of Southern blight in pepper plants.

본 연구에서는 흰비단병에 대한 길항 미생물과 유기농업자재를 선발하여 혼합 처리 시 방제 효과를 확인하고자 하였다. 토양에서 분리한 39균주 중 균사 생장 억제력이 가장 높은 JJ2-01 균주를 길항 미생물로 선발하였다. 또한, 유기농업자재의 흰비단병 발병도를 확인하여 병 억제 효과가 있는 유기농업자재로 마늘 오일을 선발하였다. 선발 미생물과 마늘 오일을 혼합하거나 마늘 오일을 단독으로 사용할 경우 병 억제 효과는 유사하게 나타났지만, 마늘 오일을 단독으로 사용할 경우 토양의 acid phosphatase의 활성이 감소하였다. 반면, 마늘 오일과 선발 미생물 JJ2-01 균주를 혼합 처리하였을 때 urease 활성이 증가하였다. 본 실험의 결과를 종합하면, 선발 미생물 JJ2-01 균주와 마늘 오일을 혼합하여 사용하면 고추 흰비단병을 효과적으로 억제하고 토양의 질과 건전성을 유지 또는 향상하는데 도움이 될 수 있을 것이라 판단된다.

Keywords

Acknowledgement

본 연구는 국립농업과학원 연구개발사업(PJ01505102)에 의하여 이루어진 것임.

References

  1. Adetunji, A. T., F. B. Lewu, R. Mulidzi, and B. Ncube. 2017. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil Sci. Plant Nutr. 17: 794-807. https://doi.org/10.4067/S0718-95162017000300018
  2. Agrios. G. N. 2005. Plant pathology. 5th ed. Elsevier Academic press. USA. p. 992
  3. Camiletti, B. X., C. M. Asensio, L. C. Gadban, M. D. L. P. G. Pecci, M. Y. Conles, and E. I. Lucini. 2016. Essential oils and their combinations with iprodione fungicide as potential antifungal agents against withe rot (Sclerotium cepivorum Berk) in garlic (Allium sativum L.) crops. Ind Crops Prod. 85: 117-124. https://doi.org/10.1016/j.indcrop.2016.02.053
  4. Chen, L., Y. D. Wu, X. Y. Chong, Q. H. Xin, D. X. Wang, and K. Bian. 2020. Seed-born endophytic Bacillus velezensis LHSB1 mediate the biocontorl of peanut stem rot caused by Sclerotium rolfsii. J. Appl. Microbiol. 128: 803-813. https://doi.org/10.1111/jam.14508
  5. Chet, I., A. Ordentlich, R. Shapira, and A. Oppenheim. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and soil. 129: 85-92. https://doi.org/10.1007/BF00011694
  6. Darma, R., I. M. Purnamasari, D. Agustina, T. E. Pramudito, M. Sugiharti, and A. Suwanto. 2016. A strong antifungal-producing bacteria from bamboo powder for biocontrol of Sclerotium rolfsii in melon (Cucumis melo var. amanta). J. Plant Pathol. Microbiol. 7: 334.
  7. De Curtis, F., G. Lima, D. Vitullo, and V. De Cicco. 2010. Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. J. Crop Prot. 29: 663-670. https://doi.org/10.1016/j.cropro.2010.01.012
  8. Dusan, F., S. Marian, D. Katarina, and B. Dobroslava. 2006. Essential oils - their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol. In Vitro. 20: 1435-1445. https://doi.org/10.1016/j.tiv.2006.06.012
  9. Erkol, D., E. Dane, and C. Eken. 2011. In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani. Turk. J. Biol. 35: 457-462.
  10. Fery, R. L. and P. D. Dukes 2002. Southern blight (Sclerotium rolfsii Sacc.) of cowpea: yield-loss estimates and sources of resistance. J. Crop Prot. 21: 403-408. https://doi.org/10.1016/S0261-2194(01)00122-3
  11. Han, J. H., H. J. Jeong, M. R. Lee, S. N. Choi, D. Y. Kim, S. H. Ahn, and J. W. Park. 2020. Insecticidal effect of entomopathogenic fungus, Isaria fumosorosea FG340 to Thrips palmi. Korean J. Pestic. Sci. 24: 374-380 https://doi.org/10.7585/kjps.2020.24.4.374
  12. Kandeler, E. and H. Gerber, 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 6: 68-72.
  13. Keswani, C., K. Bisen, V. Singh, B. K. Sarma, and H. B. Singh. 2016. Bioformulations: for Sustainable Agriculture, Springer, Berlin, Germany, pp. 35-52.
  14. Khan, N., M. Maymon, and A. M. Hirsch. 2017. Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms. 5: 75. https://doi.org/10.3390/microorganisms5040075
  15. Kumar, A., S. Singh, A. Mukherjee, R. P. Rastogi, and J. P. Verma. 2021. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol. Res. 242: 126616. https://doi.org/10.1016/j.micres.2020.126616
  16. Kutawa, A. B., M. D. Danladi, and A. Haruna 2018. Regular article antifungal activity of garlic (Allium sativum) extract on some selected fungi. J. Med. Herbs Ethnomed. 4: 12-14.
  17. Kwon, J. H. and C. S. Park. 2004. Stem rot of Capsicum annuum caused by Sclerotium rolfsii in Korea. Res. Plant Dis. 10: 21-24. https://doi.org/10.5423/RPD.2004.10.1.021
  18. Lin, Y. C., K. R. Chung, and J. W. Huang. 2020. A synergistic effect of chitosan and lactic acid bacteria on the control of cruciferous vegetable diseases. Plant Pathol. J. 36: 157. https://doi.org/10.5423/PPJ.OA.01.2020.0004
  19. Ma, X., H. Li, J. Zhang, and J. Shen. 2021. Spatiotemporal pattern of acid phosphatase activity in soils cultivated with maize sensing to phosphorus-rich patches. Front. Plant Sci. 12.
  20. Mullen, J. 2001. Southern blight, southern stem blight, white mold. Plant Health Instr. DOI: 10.1094/PHI-I-2001-0104-01.
  21. Park, D. W., Y. S. Yang, Y. U. Lee, S. J. Han, H. J. Kim, S. H. Kim, and A. G. Kim. 2021. Pesticide residue and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: a 15-year study. Foods. 10: 425. https://doi.org/10.3390/foods10020425
  22. Portz, D., E. Koch, and A. J. Slusarenko. 2008. In The Downy Mildews-Genetics, Molecular Biology and Control, Springer, Berlin, Germany, pp. 197-206.
  23. Punja, Z. K. 1985. The biology, ecology, and control fo Sclerotium rolfsii. Annu. Rev. Phytopathol. 23: 97-127 https://doi.org/10.1146/annurev.py.23.090185.000525
  24. Radice, M., N. R. Maddela, and L. Scalvenzi. 2022. Biological activities of zingiber officinale roscoe essential oil against fusarium spp.: A minireview of a promising tool for biocontrol. Agronomy. 12: 1168. https://doi.org/10.3390/agronomy12051168
  25. Saleem, M. S., T. S. Batool, M. F. Akbaar, S. Raza, and S. Shahzad. 2019. Efficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions. Egypt. J. Biol. Pest Control 29: 1-7. https://doi.org/10.1186/s41938-018-0103-7
  26. Seo, S. T., J. S. Lee, J. H. Park, K. S. Han, and H. I. Jang. 2006. Control of powdery mildew by garlic oil in cucumber and tomato. Res. Plant Dis. 12: 51-54. https://doi.org/10.5423/RPD.2006.12.1.051
  27. Sharf, W., A. Javaid, A. Shoaib, and I. H. Khan. 2021. Induction of resistance in chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egypt. J. Biol. Pest Control. 31: 1-11. https://doi.org/10.1186/s41938-020-00345-7
  28. Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
  29. Turkmen, M., M. Kara, H. Maral, and S. Soylu. 2021. Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. J. Food Process. Preserv. e15787.
  30. Wang, Y., K. Wei, X. Han, D. Zhao, Y. Zheng, J. Chao, and C. S. Zhang. 2019. The antifungal effect of garlic essential oil on Phytophthora nicotianae and the inhibitory component involved. Biomolecules. 9: 632. https://doi.org/10.3390/biom9100632
  31. Wu, J., B. Yang, X. Zhang, A. G. Cuthbertson, and S. Ali. 2021. Synergistic interaction between the entomopathogenic fungus Akanthomyces attenuatus (Zare & Gams) and the botanical insecticide matrine against Megalurothrips usitatus (Bagrall). J. Fungi. 7: 536. https://doi.org/10.3390/jof7070536
  32. Xie, C. and G. Vallad. 2010. Integrated management of southern blight in vegetable production. EDIS. 2010.
  33. Xu, M., X. Zhang, J. Yu, Z. Guo, J. Wu, X. Li, Y. Chi, and S. Wan. 2020. Biological control of peanut southern blight (Sclerotium rolfsii) by the strain Bacillus pumilus LX11. Biocontrol Sci. Technol. 30: 485-489. https://doi.org/10.1080/09583157.2020.1725441
  34. Yeon, I. K., C. K. Shim, M. J. Kim, J. M. Park, W. H. Jung, H. W. Do, and S. H. Park. 2020. Research status of environmental friendly management for korean melon powdery mildew. Korean J. Pestic. Sci. 24: 136-147. https://doi.org/10.7585/kjps.2020.24.2.136