• Title/Summary/Keyword: order of convergence

Search Result 6,644, Processing Time 0.035 seconds

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

SOME OPTIMAL METHODS WITH EIGHTH-ORDER CONVERGENCE FOR THE SOLUTION OF NONLINEAR EQUATIONS

  • Kim, Weonbae;Chun, Changbum
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.663-676
    • /
    • 2016
  • In this paper we propose a new family of eighth order optimal methods for solving nonlinear equations by using weight function methods. The methods of the family require three function and one derivative evaluations per step and has order of convergence eight, and so they are optimal in the sense of Kung-Traub hypothesis. Precise analysis of convergence is given. Some members of the family are compared with several existing methods to show their performance and as a result to confirm that our methods are as competitive as compared to them.

ON A LOCAL CHARACTERIZATION OF SOME NEWTON-LIKE METHODS OF R-ORDER AT LEAST THREE UNDER WEAK CONDITIONS IN BANACH SPACES

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.513-523
    • /
    • 2015
  • We present a local convergence analysis of some Newton-like methods of R-order at least three in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first and second $Fr{\acute{e}}chet$-derivative of the operator involved. These conditions are weaker that the corresponding ones given by Hernandez, Romero [10] and others [1], [4]-[9] requiring hypotheses up to the third $Fr{\acute{e}}chet$ derivative. Numerical examples are also provided in this study.

EXPANDING THE CONVERGENCE DOMAIN FOR CHUN-STANICA-NETA FAMILY OF THIRD ORDER METHODS IN BANACH SPACES

  • Argyros, Ioannis Konstantinos;George, Santhosh;Magrenan, Angel Alberto
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.23-41
    • /
    • 2015
  • We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica and Neta. These authors extended earlier results by Kou, Li and others. Our convergence analysis extends the applicability of these methods under less computational cost and weaker convergence criteria. Numerical examples are also presented to show that the earlier results cannot apply to solve these equations.

ON A QUADRATICALLY CONVERGENT ITERATIVE METHOD USING DIVIDED DIFFERENCES OF ORDER ONE

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.203-221
    • /
    • 2007
  • We introduce a new two-point iterative method to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one, and two previous iterates. However in contrast to the Secant method which is of order 1.618..., our method is of order two. A local and a semilocal convergence analysis is provided based on the majorizing principle. Finally the monotone convergence of the method is explored on partially ordered topological spaces. Numerical examples are also provided where our results compare favorably to earlier ones [1], [4], [5], [19].

  • PDF

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif;Fan, Wesley
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1114-1124
    • /
    • 2017
  • Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

ZEROS OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF SMALL LOWER GROWTH

  • Wang, Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.235-241
    • /
    • 2003
  • It is proved that the product of any two linearly independent meromorphic solutions of second order linear differential equations with coefficients of small lower growth must have infinite exponent of convergence of its zero-sequences, under some suitable conditions.

A FOURTH-ORDER ACCURATE FINITE DIFFERENCE SCHEME FOR THE EXTENDED-FISHER-KOLMOGOROV EQUATION

  • Kadri, Tlili;Omrani, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.297-310
    • /
    • 2018
  • In this paper, a nonlinear high-order difference scheme is proposed to solve the Extended-Fisher-Kolmogorov equation. The existence, uniqueness of difference solution and priori estimates are obtained. Furthermore, the convergence of the difference scheme is proved by utilizing the energy method to be of fourth-order in space and second-order in time in the discrete $L^{\infty}-norm$. Some numerical examples are given in order to validate the theoretical results.

HIGHER ORDER INTERVAL ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Singh, Sukhjit;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.61-76
    • /
    • 2015
  • In this paper, a fifth order extension of Potra's third order iterative method is proposed for solving nonlinear equations. A convergence theorem along with the error bounds is established. The method takes three functions and one derivative evaluations giving its efficiency index equals to 1.495. Some numerical examples are also solved and the results obtained are compared with some other existing fifth order methods. Next, the interval extension of both third and fifth order Potra's method are developed by using the concepts of interval analysis. Convergence analysis of these methods are discussed to establish their third and fifth orders respectively. A number of numerical examples are worked out using INTLAB in order to demonstrate the efficacy of the methods. The results of the proposed methods are compared with the results of the interval Newton method.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.