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ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND

ORDER LINEAR DIFFERENTIAL EQUATIONS

Sanjay Kumar and Manisha Saini

Abstract. For a second order linear differential equation f ′′+A(z)f ′+
B(z)f = 0, with A(z) and B(z) being transcendental entire functions

under some restrictions, we have established that all non-trivial solutions

are of infinite order. In addition, we have proved that these solutions,
with a condition, have exponent of convergence of zeros equal to infinity.

Also, we have extended these results to higher order linear differential

equations.

1. Introduction

Consider a second order linear differential equation of the form

(1) f ′′ +A(z)f ′ +B(z)f = 0, B(z) 6≡ 0,

where A(z) and B(z) are entire functions. The fundamental results of complex
differential equations can be found in [13] and [15]. We have used the notion of
value distribution Theory of meromorphic function, also known as Nevanlinna
theory [23]. For an entire function f , the order of f and exponent of convergence
of f are defined, respectively, in the following manner,

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, λ(f) = lim sup

r→∞

log+N(r, 1f )

log r
,

where T (r, f) is the characteristic function of f(z) and N(r, 1f ) is the number

of zeros of f(z) enclosed in the disk |z| < r. For an entire function we can
replace T (r, f) with log+M(r, f), where M(r, f) is the maximum modulus of
the function f(z).

It is well known that all solutions of the equation (1) are entire functions.
Using Wiman-Valiron theory, it is proved that equation (1) has all solutions of
finite order if and only if both A(z) and B(z) are polynomials [15]. Therefore, if
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either A(z) or B(z) is a transcendental entire function, then almost all solutions
of the equation (1) are of infintite order. So, it is natural to find conditions
on coeffiicients of the equation (1) such that all non-trivial solutions of the
equation (1) are of infinite order. Our aim in this paper is to find such A(z)
and B(z). It was Gundersen [8], who gave a necessary condition for equation
(1) to have a solution of finite order:

Theorem 1. A necessary condition for equation (1) to have a non-trivial so-
lution f of finite order is

(2) ρ(B) ≤ ρ(A).

We illustrate this condition with following examples:

Example 1. f(z) = e−z satisfies f ′′ + e−zf ′ − (e−z + 1)f = 0, where ρ(A) =
ρ(B) = 1.

Example 2. With A(z) = ez + 2 and B(z) = 1 equation (1) has finite order
solution f(z) = e−z + 1, where ρ(B) < ρ(A).

Thus if ρ(A) < ρ(B), then all solutions of the equation (1) are of infinite
order. However, given necessary condition is not sufficient, for example:

Example 3 ([11]). If A(z) = P (z)ez +Q(z)e−z +R(z), where P , Q and R are
polynomials and B(z) is an entire function with ρ(B) < 1, then ρ(f) is infinite
for all non-trivial solutions f of the equation (1).

In the same paper [8], Gundersen proved the following result:

Theorem 2. Let f be a non-trivial solution of the equation (1) where either

(i) ρ(B) < ρ(A) < 1
2 or

(ii) A(z) is a transcendental entire function with ρ(A) = 0 and B(z) is a
polynomial.

Then ρ(f) is infinite.

Hellerstein, Miles and Rossi [12] proved Theorem 2 for ρ(B) < ρ(A) = 1
2 . In

[5], Frei showed that the second order differential equation,

(3) f ′′ + e−zf ′ +B(z)f = 0

possesses a solution of finite order if and only if B(z) = −n2, n ∈ N. Ozawa
[20] proved that the equation (3) possesses no solution of finite order when
B(z) = az + b, a 6= 0. Amemiya and Ozawa [1] and Gundersen [6] studied the
equation (3) for B(z) being a particular polynomial. After this, Langley [16]
showed that the differential equation

(4) f ′′ + Ce−zf ′ +B(z)f = 0

has all non-trivial solutions of infinite order for any nonzero constant C and
for any nonconstant polynomial B(z).
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J. R. Long introduced the notion of the deficient value and Borel direction
into the studies of the equation (1). For the definition of deficient value, Borel
direction and function extremal for Yang’s inequality one may refer to [23].

In [19], J. R. Long proved that if A(z) is an entire function extremal for
Yang’s inequality and B(z) a transcendental entire function with ρ(B) 6= ρ(A),
then all solutions of the equation (1) are of infinite order. In [17], J. R. Long
replaced the condition ρ(B) 6= ρ(A) with the condition that B(z) is an entire
function with Fabry gap. We say that an entire function B(z) =

∑∞
n=0 aλn

zλn

has Fabry gap if the sequence (λn) satisfies

λn
n
→∞

as n→∞. An entire function B(z) with Fabry gap satisfies ρ(B) > 0 [10].
X. B. Wu [21] proved that if A(z) is a non-trivial solution of w′′+Q(z)w = 0,

where Q(z) = bmz
m + · · · + b0, bm 6= 0 and B(z) be an entire function with

µ(B) < 1
2 + 1

2(m+1) , then all solutions of equation (1) are of infinite order.

J. R. Long [17] replaced the condition µ(B) < 1
2 + 1

2(m+1) with B(z) being an

entire function with Fabry gap such that ρ(B) 6= ρ(A).
The main source of the problems in complex differential equations is Gunder-

sen’s “Research questions on meromorphic functions and complex differential
equations” [9]. J. R. Long [18] gave a partial solution for a question (Question
no. 5.1) asked by Gundersen in [9]. He proved that:

Theorem 3. Let A(z) = v(z)eP (z), where v(z)( 6≡ 0) is an entire function
and P (z) = anz

n + · · · + a0 is a polynomial of degree n such that ρ(v) < n.
Let B(z) = bmz

m + · · · + b0 be a non-constant polynomial of degree m. Then
all non-trivial solutions of the equation (1) have infinite order if one of the
following condition holds:

(i) m+ 2 < 2n;
(ii) m+ 2 > 2n and m+ 2 6= 2kn for all integers k;

(iii) m+ 2 = 2n and
a2n
bm

is not a negative real.

In our work, we have assumed B(z) to be a transcendental entire function
in Theorem 3. We will prove the following theorem:

Theorem 4. Suppose A(z) is an entire function with λ(A) < ρ(A) and

(1) B(z) is a transcendental entire function satisfying ρ(B) 6= ρ(A) or
(2) B(z) is a transcendental entire function with Fabry gap.

Then all non-trivial solutions of the equation (1) are of infinite order.

For the exponent of convergence of zeros of f , where f is a non-trivial
solution of the equation (1) with coefficients satisfying the condition of Theorem
4, we have next result.
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Corollary 1. Suppose that f(z) = h(z)eQ(z) a non-trivial solution of the equa-
tion (1), where h(z) is a canonical product of zeros of f(z) and Q(z) is an entire
function. Then λ(f) =∞, if ρ(B) > max{ρ(A), ρ(Q)}.

In condition (2) of Theorem 4, B(z) may be a transcendental entire function
with order equal to the order of an entire function A(z). J. R. Long proved
Theorem 4 for A(z) being an entire function extremal for Yang’s inequality in
[17] and [19]. We illustrate our result with some examples.

Example 4. Consider the equation

f ′′ +Q(z)eP (z)f ′ +B(z)f = 0,

where Q(z), P (z) are polynomials and B(z) is any transcendental entire funcion
with ρ(B) 6= degree of P (z). Then ρ(f) =∞ for all non-trivial solutions.

Example 5. If equation is given by

f ′′ + sin(z)eP (z)f ′ + cos(z
n
2 )f = 0,

where P (z) is a polynomial of degree m > 1, m 6= n
2 and n ∈ N, then all

non-trivial solutions are of infinite order.

We have organised the paper in the following manner. In Section 2, we give
results which will be useful in proving our main result. In Section 3, we will
prove our main theorem. In Section 4, we will extend our result to higher order
linear differential equations.

2. Auxiliary result

In this section, we present some known results, which will be useful in proving
Theorem 4. These results involves linear measure, logarithmic measure and
logarithmic density of sets, therefore we recall these concepts:

The linear measure of a set E ⊂ [0,∞) is defined as m(E) =
∫
E
dt. The

logarithmic measure of a set F ⊂ [1,∞) is given by m1(F ) =
∫
F
dt
t . The upper

and lower logarithmic densities of a set F ⊂ [0,∞) are given, respectively, by

log dens(F ) = lim sup
r→∞

m1(F ∩ [1, r])

log r
, log dens(F ) = lim inf

r→∞

m1(F ∩ [1, r])

log r
.

Also, logarithmic density of a set F ⊂ [1,∞) is defined as

log dens(F ) = log dens(F ) = log dens(F ).

The following lemma is due to Gundersen [7] which has been used extensively
in the literature.

Lemma 1. Let f be a transcendental entire function of finite order ρ and let
Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote finite set of distinct pairs of integers
that satisfy ki > ji ≥ 0 for i = 1, 2, . . . ,m and let ε > 0 be a given constant.
Then the following three statements hold:



ON ZEROS AND GROWTH 233

(i) there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if
ψ0 ∈ [0, 2π) \E1, then there is a constant R0 = R0(ψ0) > 0 so that for
all z satisfying arg z = ψ0 and |z| ≥ R0 and for all (k, j) ∈ Γ, we have

(5)

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε).
(ii) there exists a set E2 ⊂ (1,∞) that has finite logarithmic measure, such

that for all z satisfying |z| 6∈ E2 ∪ [0, 1] and for all (k, j) ∈ Γ, the
inequality (5) holds.

(iii) there exists a set E3 ⊂ [0,∞) that has finite linear measure, such that
for all z satisfying |z| 6∈ E3 and for all (k, j) ∈ Γ, we have

(6)

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ+ε).
For the statement of next lemma we need the notion of critical rays which

is defined as follows:

Definition 1 ([18]). Let P (z) = anz
n + an−1z

n−1 + · · · + a0, an 6= 0 and
δ(P, θ) = Re(ane

ιnθ). A ray γ = reιθ is called a critical ray of eP (z) if δ(P, θ) =
0.

It can be easily seen that there are 2n different critical rays of eP (z) which
divides the whole complex plane into 2n distinict sectors of equal length π

n .
Also δ(P, θ) > 0 in n sectors and δ(P, θ) < 0 in remaining n sectors. We note
that δ(P, θ) is alternatively positive and negative in the 2n sectors. We now fix
some notations:

E+ = {θ ∈ [0, 2π] : δ(P, θ) ≥ 0},
E− = {θ ∈ [0, 2π] : δ(P, θ) ≤ 0}.

Let α > 0 and β > 0 be such that α < β then

Ω(α, β) = {z ∈ C : α < arg z < β}.
The following result gives estimates for absolute value of A(z) outside a negli-
gible set (i.e., the set of measure zero).

Lemma 2 ([2]). Let A(z) = v(z)eP (z) be an entire function with λ(A) <
ρ(A) = n, where P (z) is a polynomial of degree n. Then for every ε > 0 there
exists E ⊂ [0, 2π) of linear measure zero such that

(i) for θ ∈ E+ \ E there exists R > 1 such that

(7) |A(reιθ)| ≥ exp ((1− ε)δ(P, θ)rn)

for r > R.
(ii) for θ ∈ E− \ E there exists R > 1 such that

(8) |A(reιθ)| ≤ exp ((1− ε)δ(P, θ)rn)

for r > R.
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Next lemma is from [4] and give estimates for an entire function of order
less than one.

Lemma 3. Let w(z) be an entire function of order ρ, where 0 < ρ < 1
2 and

let ε > 0 be a given constant. Then there exists a set S ⊂ [0,∞) that has
upper logarithmic density at least 1− 2ρ such that |w(z)| > exp(|z|ρ−ε) for all
z satisfying |z| ∈ S.

The following lemma is from [15].

Lemma 4. Let g : (0,∞) → R, h : (0,∞) → R be monotone increasing func-
tions such that g(r) < h(r) outside of an exceptional set E of finite logarithmic
measure. Then, for any α > 1, there exists r0 > 0 such that g(r) < h(αr) holds
for all r > r0.

Next lemma give property of an entire function with Fabry gap and can be
found in [17], [22].

Lemma 5. Let g(z) =
∑∞
n=0 aλn

zλn be an entire function of finite order with
Fabry gap, and h(z) be an entire function with ρ(h) = σ ∈ (0,∞). Then for
any given ε ∈ (0, σ), there exists a set H ⊂ (1,+∞) satisfying log dens(H) ≥ ξ,
where ξ ∈ (0, 1) is a constant such that for all |z| = r ∈ H, one has

logM(r, h) > rσ−ε, logm(r, g) > (1− ξ) logM(r, g),

where M(r, h) = max{|h(z)| : |z| = r}, m(r, g) = min{|g(z)| : |z| = r} and
M(r, g) = max{|g(z)| : |z| = r}.

The following remark follows from the above lemma.

Remark 1. Suppsoe that g(z) =
∑∞
n=0 aλnz

λn be an entire function of order
σ ∈ (0,∞) with Fabry gaps then for any given ε > 0, (0 < 2ε < σ), there exists
a set H ⊂ (1,+∞) satisfying log dens(H) ≥ ξ, where ξ ∈ (0, 1) is a constant
such that for all |z| = r ∈ H, one has

|g(z)| > M(r, g)(1−ξ) > exp
(
(1− ξ)rσ−ε

)
> exp

(
rσ−2ε

)
.

Next result gives the lower bound for the order of a solution of the equation
(1) and its proof can be found in [11].

Lemma 6. Let f be a finite order solution of the equation (1) with ρ(A) >
ρ(B). Then ρ(f) ≥ ρ(A).

This lemma is not true if ρ(A) = ρ(B), for example, f(z) = z is a solution
of differential equation f ′′ + (zez)f ′ − ezf = 0. We are now prepared to give
the proof of our main result.

3. Proof of Theorem 4

Proof. If ρ(A) = ∞, then the conclusion holds (from equation (1)). And if
ρ(A) < ρ(B), then by Theorem 2, all non-trivial solutions f of the equation
(1) are of infinite order. Thus we consider that ρ(B) ≤ ρ(A) <∞.
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Since λ(A) < ρ(A) therefore A(z) = v(z)eP (z), where v(z) is an entire
function and P (z) = anz

n + an−1z
n−1 + · · · + a0, an 6= 0, λ(A) = ρ(v) <

ρ(A) = n.
Let us suppose that there exists a non-trivial solution f of the equation (1)

such that ρ(f) < ∞. Then by Lemma 1, there exists a set E1 ⊂ [0, 2π) that
has linear measure zero, such that if ψ0 ∈ [0, 2π) \E1, then there is a constant
R0 = R0(ψ0) > 0 so that for all z satisfying arg z = ψ0 and |z| ≥ R0, we have

(9)

∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2.

(1) Let B(z) be a transcendental entire function with ρ(B) 6= ρ(A). In this
case we need to consider ρ(B) < ρ(A). We consider the following cases
on ρ(B).

(a) Suppose that 0 < ρ(B) ≤ 1
2 . Then from Lemma 3, there exists

a set S ⊂ [0,∞) that has upper logarithmic density at least
1− 2ρ(B) such that

(10) |B(z)| > exp(|z|ρ(B)−ε)

for all z, satisfying |z| ∈ S. From equation (1), (8), (9) and (10),
for all z, satisfying arg z = ψ0 ∈ E− \ (E ∪ E1) and |z| = r ∈ S,
|z| = r > R0(ψ0) we have

exp (rρ(B)−ε) < |B(z)|

≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ r2ρ(f)(1 + o(1))

which is a contradiction for arbitrary large r.
(b) When 1

2 ≤ ρ(B) < ∞ then using Phragmén-Lindelöf principle,
there exists a sector Ω(α, β); 0 ≤ α < β ≤ 2π with β −α ≥ π

ρ(B)

such that

(11) lim sup
r→∞

log+ log+ |B(reιθ)|
log r

= ρ(B)

for all θ ∈ Ω(α, β). Since ρ(B) < ρ(A) this implies that there
exists θ0 ∈ Ω(α, β)∩(E− \ E). Thus from equation (8) and (11),
for arg z = θ0 we have,

(12) |A(reιθ0)| ≤ exp ((1− ε)δ(P, θ0)rn)

and

(13) exp
(
rρ(B)−ε

)
< |B(reιθ0)|

for sufficiently large r. Now from equations (1), (9), (12) and
(13), for all z = reιθ0 , satisfying θ0 ∈ Ω(α, β) ∩ (E− \ (E ∪ E1))
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and |z| = r > R0(θ0) we have,

exp (rρ(B)−ε) < |B(z)|

≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ r2ρ(f)(1 + o(1))

which gives a contradiction for arbitrary large r.
(c) Now suppose that B(z) is a transcendental entire function with

ρ(B) = 0, then using a result from [3], for all θ ∈ [0, 2π) one has,

(14) lim sup
r→∞

log |B(reιθ)|
log r

=∞

this implies that for any large G > 0 there exists R(G) > 0 such
that

(15) rG < |B(reιθ)|

for all θ ∈ [0, 2π) and for all r > R(G). From equations (1), (8),
(9) and (15), for all z = reιθ satisfying arg z = θ ∈ E−\(E ∪ E1)
and |z| = r > R we have,

rG < |B(z)|

≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ r2ρ(f)(1 + o(1))

which is a contradiction for arbitrary large r.
Thus all non-trivial solutions of the equation (1) are of infinite order
in this case.

(2) Let B(z) be a transcendental entire function with Fabry gap. Then
from Lemma (5), for any given ε > 0, (0 < 2ε < ρ(B)), there exists
a set H ⊂ (1,+∞) satisfying log dens(H) ≥ ξ, where ξ ∈ (0, 1) is a
constant such that for all |z| = r ∈ H, one has

(16) |B(z)| > exp
(
rρ(B)−2ε

)
.

From equation (1), (8), (9) and (16), for all z satisfying arg z = ψ0 ∈
E− \ (E ∪ E1) and |z| = r ∈ H, r > R0(ψ0), we have

exp
(
rρ(B)−2ε

)
< |B(z)| ≤

∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ r2ρ(f)(1 + o(1))

which again gives a contradiction for arbitrary large r.

We thus conclude that all non-trivial solutions of the equation (1) are of infinite
order. �
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We next give proof of Corollary 1, which involves Theorem 1 and order of
sum of entire functions, see [14].

Proof. Since f(z) = h(z)eQ(z), where h(z) is canonical product of zeros of f
and Q(z) is entire function, be a solution of equation (1) therefore ρ(f) =∞.

From equation (1), we have

(17) h′′+ (A(z) + 2Q′(z))h′+
(
B(z) +Q′′(z) + (Q′)2(z) +A(z)Q′(z)

)
h = 0.

If λ(f) = ρ(h) < ρ(f) =∞, from Theorem 1 we have that ρ(A+ 2Q′) ≥ ρ(B+
Q′′ +Q′2 +AQ′). Which does not hold under given condition. Thus, equation
(17) has no non-trivial solution of finite order. Hence, λ(f) = ρ(h) =∞. �

4. Further results

In this section we will extend our result to higher order linear differential
equations. We consider the higher order linear differential equation as follows:

(18) f (m) +A(m−1)(z)f
(m−1) + · · ·+A1(z)f ′ +A0(z)f = 0,

where m ≥ 2 and A0, A1, . . . , A(m−1) are entire functions. Then it is well
known that all solutions of the equation (18) are entire functions. Moreover,
if A0, A1, . . . , A(m−1) are polynomials, then all solutions of the equation (18)
are of finite orde and vice-versa [15]. Therefore, if any of the coefficient is a
transcendental entire function, then equation (18) will possesses almost all so-
lutions of infinite order. In the next theorem, we give conditions on coefficients
of the equation (18) so that all solutions are of infinite order.

Theorem 5. Suppose there exists an integer j ∈ {1, 2, . . . ,m − 1} such that
λ(Aj) < ρ(Aj). Suppose that A0 is a transcendental entire function satisfying
ρ(Ai) < ρ(A0) where i = 1, 2, . . . ,m− 1, i 6= j with

(1) ρ(A0) 6= ρ(Aj) or
(2) A0(z) being a transcendental entire function with Fabry gap.

Then every non-trivial solution of the equation (18) is of infinite order.

Proof. First let us suppose that ρ(Aj) < ρ(A0). Then suppose that there exist
a solution f 6≡ 0 of the equation (18) such that ρ(f) < ∞, then by (ii) of
Lemma 1, there exists a set E2 ⊂ (1,∞) that has finite logarithmic measure,
such that for all z satisfying |z| 6∈ E2 ∪ [0, 1] such that

(19)

∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|mρ(f),
where k = 1, 2, . . . ,m. Using equation (18) and (19), we have

|A0(z)| ≤
∣∣∣∣f (m)(z)

f(z)

∣∣∣∣+ |A(m−1)(z)|
∣∣∣∣f (m−1)(z)f(z)

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ |z|mρ(f){1 + |A(m−1)(z)|+ · · ·+ |A1(z)|}
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for all z satisfying |z| 6∈ E2 ∪ [0, 1]. From here we get that

(20) T (r,A0) ≤ mρ(f) log r + (m− 1)T (r,Ai) +O(1),

where T (r,Ai) = max{T (r,Ak) : k = 1, 2, . . . ,m− 1} and |z| = r 6∈ E2 ∪ [0, 1].
Using Lemma 4, this implies that ρ(A0) ≤ ρ(Ai), which is a contradiction.
Thus all non-trivial solutions of the equation (18) are of infinite order in this
case.

Now consider ρ(A0) ≤ ρ(Aj) and there exists a non-trivial solution f of finite
order then by (i) of Lemma 1, there exists a set E1 ⊂ [0, 2π) with linear measure
zero such that if ψ0 ∈ [0, 2π) \ E1, then there is a constant R0 = R0(ψ0) > 0
so that for all z satisfying arg z = ψ0 and |z| ≥ R0 we have

(21)

∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|mρ(f), k = 1, 2, . . . ,m− 1.

Since ρ(Ai) < ρ(A0) for all i = 1, 2, . . . ,m − 1, i 6= j then for any constant
η > 0 such that

max{ρ(Ai) : i = 1, 2, . . . ,m− 1, i 6= j} < η < ρ(A0)

there exists R0 > 0 such that

(22) |Ai(z)| ≤ exp |z|η,
where i = 1, 2, . . . ,m− 1, i 6= j and |z| = r > R0.

Also λ(Aj) < ρ(Aj) = n then Aj(z) = v(z)eP (z), where v(z) is an entire
function and P (z) is a polynomial of degree n.

(1) Let A0(z) be a transcendental entire function with ρ(A0) 6= ρ(Aj). In
this case we need to consider that ρ(A0) < ρ(Aj). We will discuss
following three cases:

(a) Suppose 0 < ρ(A0) < 1
2 then by Lemma 3, for 0 < ε < (ρ(A0)−η)

there exists a set S ⊂ [0,∞) that has upper logarithmic density
at least 1− 2ρ(A0) such that

(23) |A0(z)| > exp(|z|ρ(A0)−ε)

for all z satisfying |z| ∈ S. Now using equation (8), (18), (21),
(22) and (23) we have

exp (|z|ρ(A0)−ε) < |A0(z)|

≤
∣∣∣∣f (m)(z)

f(z)

∣∣∣∣+ |A(m−1)(z)|
∣∣∣∣f (m−1)(z)f(z)

∣∣∣∣
+ · · ·+ |A1(z)|

∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ rmρ(f){1 + exp rη + · · ·

+ exp ((1− ε)δ(P,ψ0)rn) + · · ·+ exp rη}

= rmρ(f){1 + (m− 2) exp rη + o(1)}
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for all z satisfying |z| = r ∈ S and arg z = ψ0 ∈ E− \ (E ∪ E1).
From here we will get contradiction for sufficiently large r.

(b) Now suppose that ρ(A0) ≥ 1
2 , then using Phragmén-Lindelöf

principle, there exists a sector Ω(α, β); 0 ≤ α < β ≤ 2π with
β − α ≥ π

ρ(A0)
such that

(24) lim sup
r→∞

log+ log+ |A0(reιθ)|
log r

= ρ(A0)

for all θ ∈ Ω(α, β). Since ρ(A0) < ρ(Aj) this implies that there
exists θ0 ∈ Ω(α, β) ∩ (E− \ E) such that

(25) |Aj(reιθ0)| ≤ exp ((1− ε)δ(P, θ0)rn)

and form equation (24), we have

(26) |A0(reιθ0)| > exp rρ(A0)−ε.

Thus we get contradiction using equation (18), (21), (22), (25)
and (26) for sufficiently large r by using similar argument as in
case (1a).

(c) Suppose that A0 is a transcendental entire function with ρ(A0) =
0, then using a result from [3], for all θ ∈ [0, 2π) one has,

(27) lim sup
r→∞

log |A0(reιθ)|
log r

=∞

this implies that for any large G > 0 there exists R(G) > 0 such
that

(28) rG < |A0(reιθ)|
for all θ ∈ [0, 2π) and for all r > R(G). From equations (8), (18),
(21), (22) and (28) we get a contradiction for sufficiently large r
using similar argument as in case (1a).
Thus, we conclude that all non-trivial solutions of the equation
(18) are of infinite order in this case.

(2) Suppose that A0(z) is a trascendental entire function with Fabry gap
then using Lemma 5, for any given ε > 0, (0 < 2ε < ρ(A0)− η), there
exists a set H ⊂ (1,+∞) satisfying log dens(H) ≥ ξ, where ξ ∈ (0, 1)
is a constant such that for all |z| = r ∈ H , one has

(29) |B(z)| > exp
(
rρ(A0)−2ε

)
.

From equation (8), (18), (21), (22) and (29), for all z satisfying arg z =
ψ0 ∈ E− \ (E ∪ E1)and |z| = r ∈ H, r > R0(ψ0), we have

exp
(
rρ(A0)−2ε

)
< |A0(z)|

≤
∣∣∣∣f (m)(z)

f(z)

∣∣∣∣+ |A(m−1)(z)|
∣∣∣∣f (m−1)(z)f(z)

∣∣∣∣
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+ · · ·+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ rmρ(f){1 + exp rη

+ · · ·+ exp ((1− ε)δ(P,ψ0)rn)

+ · · ·+ exp rη}

= rmρ(f){1 + (m− 2) exp rη + o(1)}

which is a contradiction for arbitrary large r.

Thus all non-trivial solutions f of the equation (18) are of infinite order. �
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uscript and suggesting the changes.

References

[1] I. Amemiya and M. Ozawa, Nonexistence of finite order solutions of w′′ + e−zw′ +

Q(z)w = 0, Hokkaido Math. J. 10 (1981), Special Issue, 1–17.
[2] S. B. Bank, I. Laine, and J. K. Langley, On the frequency of zeros of solutions of

second order linear differential equations, Results Math. 10 (1986), no. 1-2, 8–24. https:

//doi.org/10.1007/BF03322360

[3] P. D. Barry, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser. (2) 14 (1963),

293–302. https://doi.org/10.1093/qmath/14.1.293

[4] A. S. Besicovitch, On integral functions of order < 1, Math. Ann. 97 (1927), no. 1,
677–695. https://doi.org/10.1007/BF01447889
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