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EXPANDING THE CONVERGENCE DOMAIN FOR

CHUN-STANICA-NETA FAMILY OF THIRD ORDER

METHODS IN BANACH SPACES

Ioannis Konstantinos Argyros, Santhosh George,

and Ángel Alberto Magreñán

Abstract. We present a semilocal convergence analysis of a third order
method for approximating a locally unique solution of an equation in
a Banach space setting. Recently, this method was studied by Chun,
Stanica and Neta. These authors extended earlier results by Kou, Li
and others. Our convergence analysis extends the applicability of these
methods under less computational cost and weaker convergence criteria.
Numerical examples are also presented to show that the earlier results
cannot apply to solve these equations.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

Many problems in computational mathematics and other disciplines can be
brought in a form like (1.1) using mathematical modelling [2, 4, 12, 15, 17,
20, 21]. The solutions of these equations can rarely be found in closed form.
That is why most solution methods for these equations are usually iterative.
In particular the practice of Numerical Functional Analysis for finding such
solutions is essentially connected to Newton-like methods [1, 2, 4, 11, 12, 15, 16,
17, 19, 20, 21]. The study about convergence of iterative procedures is normally
centered on two types: semi-local and local convergence analysis. The semi-
local convergence matter is, based on the information around an initial point,
to give criteria ensuring the convergence of the iterative procedures. While the
local analysis is based on the information around a solution, to find estimates

Received January 30, 2014; Revised April 4, 2014.
2010 Mathematics Subject Classification. 65H10, 65G99, 65K10, 47H17, 49M15.
Key words and phrases. family of third order method, Newton-like methods, Banach

space, semilocal convergence, majorizing sequences, recurrent relations, recurrent functions.

c©2015 Korean Mathematical Society

23



24 I. K. ARGYROS, S. GEORGE, AND Á. A. MAGREÑÁN

of the radii of convergence balls. There exist many studies which deal with the
local and the semilocal convergence analysis of Newton-like methods such as
[1]-[22].

Majorizing sequences in connection to the Kantorovich theorem have been
used extensively for studying the convergence of these methods [2, 3, 4, 7, 12,
17]. Rall [21] suggested a different approach for the convergence of these meth-
ods, based on recurrent relations. Candela and Marquina [5, 6], Parida [18],
Parida and Gupta [19], Magreñán [15], Ezquerro and Hernández [8], Gutiérrez
and Hernández [9, 10]. Argyros [2, 3, 4] used this idea for several high-order
methods. In particular, Kou and Li [13] introduced a third order family of
methods for solving equation (1.1), when X = Y = R defined by

(1.2)

yn = xn − θF ′(xn)
−1F (xn) for each n = 0, 1, 2, . . .

xn+1 = xn −
θ2 + θ − 1

θ2
F ′(xn)

−1F (xn)−
1

θ2
F ′(xn)

−1F (yn),

where x0 is an initial point and θ ∈ R− {0}. This family uses two evaluations
of F and one evaluation of F ′. Third order methods requiring one evaluation
of F and two evaluation of F ′ can be found in [2, 4, 13, 20]. It is well known
that the convergence domain of high order methods is in general very small.
This fact limits the applicability of these methods. In the present study we
are motivated by this fact and recent work by Chun, Stanica and Neta [7] who
provided a semilocal convergence analysis of the third order method (1.2) in
a Banach space setting. Their semilocal convergence analysis is based on re-
current relations. In Section 2 we show convergence of the third order method
(1.2) using more precise recurrent relations under less computational cost and
weaker convergence criterion. Moreover, the error estimates on the distances
‖xn+1 − xn‖, ‖xn − x∗‖ are more precise and the information on the location
of the solution at least as precise. In Section 3 using our technique of recur-
rent functions we present a semilocal convergence analysis using majorizing
sequence. The convergence criterion can be weaker than the older convergence
criteria or the criteria of Section 2. Numerical examples are presented in Sec-
tion 4 that show the advantages of our work over the older works.

2. Semilocal convergence I

Let U(w, ρ), U(w, ρ) stand for the open and closed ball, respectively, with
center w ∈ X and of radius ρ > 0. Let also L(X,Y ) denote the space of bounded
linear operators from X into Y.

The semilocal convergence analysis of third order method (1.2), given by
Chun, Stanica and Neta [7] is based on the following conditions. Suppose:

(C):

(1) There exists ‖F ′(x)− F ′(y)‖ ≤ K‖x− y‖ for each x and y ∈ D;
(2) ‖F ′′(x)‖ ≤ M for each x ∈ D;
(3) ‖F ′(x0)

−1‖ ≤ β;
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(4) ‖F ′(x0)
−1F (x0)‖ ≤ η.

They defined certain parameters and sequences by

a = Kβη,

α =
|θ2 + θ − 1|+ |1− θ|

θ2
,

γ =
M

2
βη,

a0 = b0 = 1, d0 = α+ γ, b−1 = 0,

an+1 =
an

1− aandn
,

bn+1 = an+1βηcn,

kn =
|1 + θ|(θ − 1)2 + |1− θ|

θ2
bn +

M

2
anβb

2
nη,

cn =
M

2
k2n +K|θ|bnkn +

M

2
|θ2 − 1|b2n

and

dn+1 = αbn+1 + γan+1b
2
n+1.

We suppose (C0):

(1) ‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ K‖x− y‖ for each x, y ∈ D;

(2) ‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ K0‖x− x0‖ for each x ∈ D;

(3) ‖F ′(x0)
−1F (x0)‖ ≤ η.

Notice that the new conditions are given in affine invariant form and the con-
dition on the second Fréchet-derivative has been dropped. The advantages of
presenting results in affine invariant form instead of non-affine invariant form
are well known [2, 4, 12, 17, 20]. If operator F is twice Fréchet differentiable,
then (1) in (C0) implies (2) in (C).

In order for us to compare the old approach with the new, let us rewrite the
conditions (C) in affine invariant form. We shall call these conditions again (C).

(C1) ‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ K‖x− y‖ for each x and y ∈ D;

(C2) ‖F ′(x0)
−1F ′′(x)‖ ≤ M for each x ∈ D;

(C4) ‖F ′(x0)
−1F (x0)‖ ≤ η.

The parameters and sequences are defined as before but β = 1. Then, we can
certainly set K = M. Define parameters

a0 = Kη,

α0 = α,

γ0 =
K

2
η,

a00 = b00 = 1, d00 = α0 + γ0, b0−1 = 0,
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a0n+1 =
1

1−K0(d0n + d0n−1 + · · ·+ d00)
,

b0n+1 = a0n+1ηc
0
n,

c0n = K[
(k0n)

2

2
+ |θ|b0nk

0
n +

|θ2 − 1|

2
(b0n)

2],

k0n =
|θ + 1|(θ − 1)2 + |1− θ|

θ2
b0n +

K

2
a0n(b

0
n)

2η

and

d0n+1 = α0b0n+1 + γ0a0n+1(b
0
n+1)

2.

We have that

(2.1) K0 ≤ K

holds in general and K
K0

can be arbitrarily large [2]-[4]. Notice that the center
Lipschitz condition is not an additional condition to the Lipschitz condition,
since in practice the computation of K involves the computation of K0 as a
special case. We have by the definition of an+1 in turn that

an+1 =
an

1−Kηandn

=
an

1−Kηdn
an−1

1−Kηan−1dn−1

=
an(1−Kηan−1dn−1)

1−Kηan−1(dn + dn−1)

=

an−1

1−Kηan−1dn−1

(1−Kηan−1dn−1)

1−Kηan−1(dn + dn−1)

=
an−1

1−Kηan−1(dn + dn−1)

...

=
a0

1−Kηan−1(dn + dn−1 + · · ·+ d0)

=
1

1−Kη(dn + dn−1 + · · ·+ d0)
.

Hence, we deduce that

(2.2) a0n+1 ≤ an+1 for each n = 0, 1, 2, . . . .

Moreover, strict inequality holds in (2.2) if K0 < K. Hence, using a simple
inductive argument we also have that

b0n+1 ≤ bn+1,(2.3)

c0n ≤ cn,(2.4)

k0n ≤ kn(2.5)
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and

(2.6) d0n+1 ≤ dn+1.

Lemma 2.1. Under the (C0) conditions the following hold

‖F ′(xn)
−1F ′(x0)‖ ≤ a0n,

‖F ′(xn)
−1F (xn)‖ ≤ b0nη,

‖xn+1 − xn‖ ≤ d0nη,

‖xn+1 − yn‖ ≤ (d0n + 2k0n−1 + θb0n)η.

Moreover, under the (C) conditions the following hold

‖F ′(xn)
−1F ′(x0)‖ ≤ a0n ≤ an,

‖F ′(xn)
−1F (xn)‖ ≤ b0nη ≤ bnη,

‖xn+1 − xn‖ ≤ d0nη ≤ dnη,

‖xn+1 − yn‖ ≤ (d0n + 2k0n−1 + θb0n)η ≤ (dn + 2kn−1 + θbn)η.

Proof. It follows from the proof of Lemma 1 in [7] by simply noticing: the
expressions involving

(i) the second Fréchet-derivative
∫ 1

0

F ′′(xn + t(yn − xn))(1 − t)(yn − xn)
2dt

and ∫ 1

0

F ′′(yn + t(xn+1 − yn))(1 − t)(xn+1 − yn)
2dt

are not needed and can be replaced, respectively, by
∫ 1

0

[F ′(yn + t(xn − yn)− F ′(xn)](yn − xn)dt

and ∫ 1

0

[F ′(yn + t(xn+1 − yn)− F ′(yn)](xn+1 − yn)dt.

Hence, condition (2) in (C) is not needed and can be replaced by condition (1)
in (C0) to produce the same bounds as in [7] (for K = M) (see also the proof
of Theorem 3.2 that follows).

(ii) The computation of the upper bounds on ‖F ′(xn)
−1F ′(x0)‖ in [7] uses

condition (1) in (C) and the estimate

‖F ′(xn)
−1(F ′(xn)− F ′(xn+1))‖ ≤ ‖F ′(xn)

−1F ′(x0)‖K‖xn − xn+1‖

to arrive at

(2.7) ‖F ′(xn)
−1F ′(x0)‖ ≤ an+1,

whereas we use (2) in (C0) and estimate

‖F ′(x0)
−1(F ′(xn)− F ′(xn+1))‖ ≤ K0‖xn+1 − xn‖
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≤ K0(‖xn+1 − xn‖+ · · ·+ ‖x1 − x0‖)

≤ K0(d
0
n + d0n−1 + · · ·+ d00)

to arrive at the estimate

(2.8) ‖F ′(xn)
−1F ′(x0)‖ ≤ a0n+1,

which is more precise (see also (2.2)). �

Lemma 2.2. Suppose that

(2.9) a01b
0
1 < 1.

Then, sequence {p0n} defined by p0n = a0nb
0
n is decreasingly convergent to 0 such

that

p0n+1 ≤ ξ2
n+1

1

1

ξ1
, ξ1 := a01b

0
1

and

d0n ≤ (α0 + γ0)ξ2
n

1

1

ξ1
.

Moreover, if

(2.10) a1b1 < 1,

then, sequence {pn} defined by pn = anbn is also decreasingly convergent to 0
such that

p0n+1 ≤ pn+1 ≤ ξ2
n+1 1

ξ
, ξ = a1b1,

d0n ≤ dn ≤ (α+ γ)ξ2
n 1

ξ
,

and

ξ1 ≤ ξ.

Proof. It follows from the proof of Lemma 3 in [7] by simply using {p0n}, a
0
1,

b01, ξ1 instead of {pn}, a1, b1, ξ, respectively. �

Next, we present the main semilocal convergence result for the third order
method (1.2) under the (C0) conditions, (2.9) and the convergence criterion

(2.11) a(α+ γ) < 1.

The proof follows from the proof of Theorem 5 in [7] (with the exception of
the uniqueness of the solution part) by simply replacing the (C) conditions and
(2.10) by the (C0) conditions and (2.9) respectively.

Theorem 2.3. Suppose that conditions (C0), (2.9) and (2.11) hold. Moreover,

suppose that

(2.12) U0
0 = U(x0, r

0η) ⊂ D,

where

(2.13) r0 =

∞∑

n=0

d0n.
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Then, sequences {xn} generated by the third order method (1.2) is well defined,
remains in U0

0 for each n = 0, 1, 2, . . . and converges to a unique solution x∗ of

equation F (x) = 0 in U(x0,
2
K0

− r0η)
⋂
D. Moreover, the following estimates

hold

(2.14) ‖xn+1 − x∗‖ ≤
∞∑

k=n+1

d0kη ≤
α+ γ

ξ1
η

∞∑

k=n+1

ξ2
k

1 .

Proof. As already noted above, we only need to show the uniqueness part. Let

y∗ ∈ U(x0,
2
K0

− r0η) be such that F (y∗) = 0. Define Q =
∫ 1

0
F ′(x∗ + t(y∗ −

x∗))dt. Using condition (2) in (C0) we get in turn that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤ K0

∫ 1

0

‖x∗ + t(y∗ − x∗)− x0‖dt

≤ K0

∫ 1

0

[(1− t)‖x∗ − x0‖+ t‖y∗ − x0‖]dt

<
K0

2
[r0η +

2

K0

− r0η] = 1.(2.15)

It follows from (2.15) and the Banach lemma on invertible operators [2, 4, 12,
17, 20] that Q−1 ∈ L(Y,X). Then, using the identity

0 = F (x∗)− F (y∗) = Q(x∗ − y∗),

we deduce that x∗ = y∗. �

Remark 2.4. If K0 = K, and operator F is twice Fréchet differentiable, then
Lemma 2.1, Lemma 2.2 and Theorem 2.3 reduce to Lemma 1, Lemma 3 and
Theorem 5 in [7], respectively. Otherwise, i.e., if K0 < K or if the twice Fréchet
differentiability of operator F is not assumed, then our results constitute an
improvement. It is worth noticing that if K0 < K, then (2.10) implies (2.9)
(but not necessarily vice versa) and ξ1 < ξ.

3. Semilocal convergence II

We need to introduce some scalar sequences that shall be shown to be ma-
jorizing for the third order methods (1.2) in Theorem 3.2.

Let K0 > 0,K > 0, η > 0 and θ ∈ R− {0}. Set t0 = 0 and s0 = |θ|η. Define
polynomials f and g by

(3.1) f(t)(
K|θ|

2
+K0)t

3 +
|θ|

2
Kt2 +K(

|θ2 − 1|

2|θ|
− |θ|)t−

K

2

|θ2 − 1|

|θ|

and

g(t)=K0t
4 +

K

2θ2
[1 + |1− θ|(1 + |1− θ2|)]t3 +

K

2θ2
[|1− θ|(1 + |1− θ2|)− 1]t2

(3.2)

+
K

θ2
|1− θ|(1+ |1− θ2|)(

|θ2− 1|

2θ2
− 1)t−

K

2θ4
|1− θ||1− θ2|(1 + |1− θ2|).
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We have f(0) = −K
2

|θ2
−1|

|θ| < 0 for θ 6= ±1 and f(1) = K0 > 0 for K0 6= 0.

It follows from the intermediate value theorem that polynomial f has roots
in (0, 1). Denote by δf the smallest root of f in (0, 1). Similarly, we have

g(0) = − K
2θ4 |1−θ||θ2−1|(1+ |1−θ2|) < 0 for θ 6= ±1 and g(1) = K0+

K
2θ2 > 0.

Denote by δg the smallest root of g in (0, 1). Set

(3.3) δ = min{δf , δg}.

Moreover, suppose that δ satisfies

(3.4)

∣∣∣∣
1− θ

θ3

∣∣∣∣ (1 + |1− θ2|) +
Kη

2θ
≤ δ,

(3.5) 0 <
K|θ|

1−K0(1 + δ)s0

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
(s0 − t0) ≤ δ

and

0 <
K

θ2(1−K0(1 + δ)s0)
{|1− θ|(1 + |1− θ2|)

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
+

δ2

2
}(s0 − t0) ≤ δ2.(3.6)

We shall assume from now on that δ satisfies conditions (3.3)-(3.6). These
conditions shall be referred to as the (△) conditions. Moreover, define scalar
sequences {tn}, {sn} by

t0 = 0, s0 = t0 + θη,

t1 = s0 +

[
|1− θ|

|θ3|
(1 + |1− θ2|) +

(s0 − t0)K

2θ2

]
(s0 − t0)

for each n = 0, 1, 2, . . . .

sn+1 = tn+1 +
K|θ|

1−K0tn+1[
|1− θ2|

2θ2
(sn − tn)

2 +
(tn+1 − sn)

2

2
+ (sn − tn)(tn+1 − sn)

]
,(3.7)

tn+2 = sn+1 +
K

θ2(1−K0tn+1)

{
|1− θ|(1 + |1− θ2|)

[
|1− θ2|

2θ2
(sn − tn)

2 +
(tn+1 − sn)

2

2
+ (sn − tn)(tn+1 − sn)

]

+
1

2
(sn+1 − tn+1)

2}.(3.8)

Then, we can show the following auxiliary result for majorizing sequences {tn},
{sn} under the (△) conditions.
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Lemma 3.1. Suppose that the (△) conditions hold. Then, sequence {tn}, {sn}
defined by (3.7) and (3.8) are increasingly convergent to their unique least upper

bound denoted by t∗ which satisfies

(3.9) θη ≤ t∗ ≤ t∗∗ :=
θη

1− δ
.

Moreover, the following estimates hold for each n = 0, 1, 2, . . . .

(3.10) 0 < sn − tn ≤ δnθη

and

(3.11) 0 < tn+1 − sn ≤ δn+1θη.

Proof. We shall show estimates (3.10) and (3.11) using induction. If n = 0,
(3.10) holds by the definition of t0 and s0, whereas (3.11) holds by (3.4). We
then have that

(3.12) t1 ≤ s0 + δs0 = (1 + δ)s0 =
1− δ2

1− δ
s0 < t∗∗.

If n = 1, estimates (3.10) and (3.11) hold by (3.5), (3.6), (3.12) and (3.10),
(3.11) for n = 0. Suppose that (3.10) and (3.11) hold for all m ≤ n. Then, we
have that

tm+1 ≤ sm + δm+1(s0 − t0) ≤ tm + δm(s0 − t0)

+ δm+1(s0 − t0) ≤ · · · ≤ t0 + (s0 − t0) + δ(s0 − t0)

+ · · ·+ δm+1(s0 − t0) =
1− δm+2

1− δ
(s0 − t0) < t∗∗.(3.13)

Next, we shall show (3.10) for m + 1 replacing n. We have by the induction
hypotheses and (3.13) that

sm+1 − tm+1 ≤
K|θ|

1−K0
1−δm+2

1−δ[
|θ2 − 1|

θ2
(δm(s0 − t0))

2 +
(δm(s0 − t0))

2

2
+ δ2m+1(s0 − t0)

2

]

must be smaller or equal to δm+1(s0 − t0), or

(3.14)
K|θ|

1−K0
1−δm+2

1−δ

[
|θ2 − 1|

θ2
δm +

δm+2

2
+ δm+1

]
(s0 − t0) ≤ δ.

Estimate (3.14) motivates us to define recurrent polynomials fm on (0, 1) by

fm(t) = K

[
|θ|

2
tm+2 + |θ|tm+1 +

|θ2 − 1|

2|θ|
tm

]
(s0 − t0)

+K0t(1 + t+ · · ·+ tm+1)(s0 − t0)− t.(3.15)
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We need a relationship between two consecutive polynomials fm. Using (3.15)
and (3.1) by direct algebraic manipulation we get that

(3.16) fm+1(t) = fm(t) + f(t)tm−1(s0 − t0).

Evidently, condition (3.14) is satisfied, if

(3.17) fm(δ) ≤ 0.

We also have from (3.17) that

(3.18) fm+1(δ) ≤ fm(δ),

since f(δ) ≤ 0. It then, follows from (3.17) and (3.18) that (3.17) holds, if

(3.19) f0(δ) ≤ 0,

which is true by (3.5). Hence, we showed (3.10) for m + 1 replacing n. Next,
we shall show (3.11) for m+ 1 replacing n. We have in turn that

sm+2 − sm+1 ≤
K

θ2(1−K0
1−δm+2

1−δ )
{|1− θ|(1 + |θ2 − 1|)

[
|θ2 − 1|

2θ2
(δm(s0 − t0))

2+
(δm+1(s0 − t0))

2

2
+δ2m+1(s0 − t0)

2

]

+ (δm+1(s0 − t0))
2}

must be smaller or equal to δm+2(s0 − t0). As in the preceding case we are
motivated to define polynomials gm on [0, 1] by

gm(t) = K

{
|1− θ|(1 + |θ2 − 1|)

θ2

[
|θ2 − 1|

θ2
tm +

tm+2

2
+ tm+1

]
+

tm+2

2θ2

}

× (s0 − t0) + t2K0(1 + t+ · · ·+ tm+1)(s0 − t0)− t2.(3.20)

Using (3.20) and (3.2) by direct algebraic manipulation we get that

(3.21) gm+1(t) = gm(t) + g(t)tm(s0 − t0).

Condition (3.11) is satisfied, if

(3.22) gm(δ) ≤ 0.

We also have from (3.21) and (△) that

(3.23) gm+1(δ) ≤ gm(δ),

since g(δ) ≤ 0. Hence, (3.22) is satisfied, if

(3.24) g0(δ) ≤ 0,

which is true by (3.6). The induction for (3.11) is completed. It then, follows
that

(3.25) tm+2 ≤
1− δm+3

1− δ
s0 < t∗∗.

Hence, sequences {tn}, {sn} are increasing, bounded above by t∗∗ and as such
they converge to their unique least upper bound t∗ which satisfies (3.9). �
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We can show the main semilocal convergence result for the third order
method (1.2) under the (C0) and (△) conditions using {tn} and {sn} as ma-
jorizing sequences.

Theorem 3.2. Suppose that

(3.26) U(x0, t
∗) ⊂ D,

the (C0) and (△) conditions hold. Then, sequences {xn}, {yn} generated by

the third order method (1.2) are well defined, remain in U(x0, t
∗) for each

n = 0, 1, 2, . . . and converge to a unique solution x∗ of equation F (x) = 0 in

U(x0, t
∗) ∩D. Moreover the following estimates hold for each n = 0, 1, 2, . . . .

‖yn − xn‖ ≤ sn − tn,(3.27)

‖xn+1 − yn‖ ≤ tn+1 − sn,(3.28)

‖xn+1 − xn‖ ≤ tn+1 − tn,(3.29)

and

(3.30) ‖xn − x∗‖ ≤ t∗ − tn.

Furthermore, if there exists R > t∗ such that

(3.31) K0(t
∗ +R) < 2,

then, the point x∗ is the only solution of equation F (x) = 0 in U(x0, R).

Proof. We shall first show (3.27) and (3.28) using induction. We have by (1.2)
and (3.7) that

‖y0 − x0‖ = |θ|‖F ′(x0)
−1F (x0)‖ ≤ |θ|η = s0 = s0 − t0.

Hence, (3.27) holds for n = 0. It follows from the first substep of (1.2) that

F (y0) = F (y0)− θF (x0)− F ′(x0)(y0 − x0)

= (1 − θ)F (x0) +

∫ 1

0

[F ′(x0 + t(y0 − x0))− F ′(x0)](y0 − x0)dt.(3.32)

Composing (3.32) by F ′(x0)
−1 and using (2), (3) in (C0) and (3.7)

‖F ′(x0)
−1F (y0)‖ ≤ |1− θ|‖‖F ′(x0)

−1F (x0)‖

+ ‖

∫ 1

0

[F ′(x0 + t(y0 − x0))− F ′(x0)](y0 − x0)dt

≤
|1− θ|

|θ|
(s0 − t0) +

K0

2
‖y0 − x0‖

2

≤ (
|1− θ|

|θ|
+

K0

2
(s0 − t0))(s0 − t0).(3.33)

Subtracting the first from the second substep in (1.2) we get that

(3.34) x1 − y0 = −
(θ + 1)(θ − 1)2

θ2
F ′(x0)

−1F (x0)−
1

θ2
F ′(x0)

−1F (y0).
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Hence, using (3.33) and (3.34), we get that

‖x1 − y0‖ =
|θ + 1||θ − 1|2

θ2
‖F ′(x0)

−1F (x0)‖+
1

θ2
‖F ′(x0)

−1F (y0)‖

≤
|θ + 1||θ − 1|2

θ2
(s0 − t0) +

1

θ2
(
|1− θ|

|θ|
+

K

2
(s0 − t0))(s0 − t0)

= t1 − s0,(3.35)

which shows (3.28) for n = 0. Then, (3.29) holds for n = 0, since

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 − t0 ≤ t∗.

Then, we have x1 ∈ U(x0, t
∗). Notice that K0t

∗ < 1 from the proof of Lemma
3.1. Let us suppose x ∈ U(x0, t

∗). Then, using (2) in (C0) we have that

(3.36) ‖F ′(x0)
−1(F ′(x)− F ′(x0))‖ ≤ K0‖x− x0‖ ≤ K0t

∗ < 1.

It follows from (3.36) and the Banach lemma that F ′(x)−1 ∈ L(Y,X) and

(3.37) ‖F ′(x1)
−1F ′(x0)‖ ≤

1

1−K0‖x1 − x0‖
≤

1

1−K0t1
.

Suppose that (3.27)-(3.29) hold for all m ≤ n and xm ∈ U(x0, t
∗). Using the

first step in (1.2) we get that

F (ym) = F (ym)− θF (xm)− F ′(xm)(ym − xm)

= (1− θ)F (xm) +

∫ 1

0

[F ′(xm + t(ym − xm))− F ′(xm)](ym − xm)dt.(3.38)

Subtracting the first step in (1.2) from the second step to obtain

(3.39) F ′(xm)(xm+1 − ym) =
θ3 − θ2 − θ + 1

θ2
F (xm)−

1

θ2
F (ym).

We also have by (3.38) that

F (xm+1) = F ′(xm)(xm+1 − ym) + F (ym) + [F ′(ym)− F ′(xm)](xm+1 − ym)

+ F (xm+1)− F (ym)− F ′(ym)(xm+1 − ym)

=
1− θ

θ2
F (xm)−

1

θ2
F (ym)

+

∫ 1

0

[F ′(xm + t(ym − xm))− F ′(xm)](ym − xm)dt

+

∫ 1

0

[F ′(ym + t(xm+1 − ym))− F ′(ym)](xm+1 − ym)dt

+ [F ′(ym)− F ′(xm)](xm+1 − ym).(3.40)

Hence, we get by (3.40) that

‖F ′(x0)
−1F (xm+1)‖ ≤ K

[
|θ2 − 1|

2θ2
‖ym − xm‖2
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+
‖xm+1 − ym‖2

2
+ ‖ym − xm‖‖xm+1 − ym‖

]

≤ K

[
|θ2 − 1|

2θ2
(sm − tm)2

+
(tm+1 − sm)2

2
+ (sm − tm)(tm+1 − sm)

]
.(3.41)

Then, we get that

‖ym+1 − xm+1‖ ≤ ‖F ′(xm+1)
−1F ′(x0)‖‖F

′(x0)
−1F (xm+1)‖

≤
K

1−K0tm+1

[
|θ2 − 1|

2θ2
(sm − tm)2

+
(tm+1 − sm)2

2
+ (sm − tm)(tm+1 − sm)

]

= sm+1 − tm+1,

where, we used (3.37) for x = xm+1 and

‖xm+1−x0‖ ≤ ‖xm+1−xm‖+ · · ·+‖x1−x0‖ ≤ tm+1−tm+ · · ·+t1−t0 = tm+1.

Hence, we showed (3.27). Then, we have by (3.39) that

(3.42) xm+1 − ym =
θ3 − θ2 − θ + 1

θ2
F ′(xm)−1F (xm)−

1

θ2
F ′(xm)−1F (ym).

It follows from (3.42) that

‖xm+2 − ym+1‖ ≤
K

1−K0tm+1

[
|1 + θ|(θ − 1)2

θ2
‖F ′(x0)

−1F (xm+1)‖

+
1

θ2
‖F ′(x0)

−1F (ym+1)‖]

≤
K

θ2(1 −K0tm+1)

[
|1 + θ|(θ − 1)2(

|θ2 − 1|

2θ2
(sm − tm)2

+
(tm+1 − sm)2

2
+ (sm − tm)(tm+1 − sm))

+|1− θ|(
|θ2 − 1|

2θ2
(sm − tm)2

+
(tm+1 − sm)2

2
+ (sm − tm)(tm+1 − sm)))

+
(sm+1 − tm+1)

2

2

]

= tm+2 − sm+1.

Hence, we showed (3.28). Then, we have that

‖xm+2 − xm+1‖ ≤ ‖xm+2 − ym+1‖+ ‖ym+1 − xm+1‖

≤ tm+2 − sm+1 + sm+1 − tm+1
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= tm+2 − tm+1,

which shows (3.29). We also have that

‖xm+2 − x0‖ ≤ ‖xm+2 − xm+1‖+ ‖xm+1 − xm‖+ · · ·+ ‖x1 − x0‖

≤ tm+2 − tm+1 + tm+1 − tm + · · ·+ t1 − t0

= tm+2 < t∗.

Hence, we get xm+2 ∈ U(x0, t
∗).

We showed in Lemma 3.1 that sequences {tn}, {sn} are complete. Hence, it
follows from (3.27)-(3.29) that sequences {xn}, {yn} are complete in a Banach
space X and as such they converge to some x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a

closed set.) By letting m → ∞ in (3.41), we obtain F (x∗) = 0. Estimate (3.30)
follows from (3.29) by using standard majorization techniques [2, 4, 12, 17, 20,
21]. Let us show uniqueness, first in U(x0, t

∗) ∩D. Let y∗ ∈ U(x0, t
∗) be such

that F (y∗) = 0. Set Q =
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt. Then, using (2) in (C0) we

get that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤ K0

∫ 1

0

[(1− t)‖x∗ + t(y∗ − x∗)− x0‖dt

≤ K0

∫ 1

0

[(1− t)‖x∗ − x0‖+ t‖y∗ − x∗)− x0‖dt

≤ K0t
∗ < 1.

It follows that Q−1 exists. Then, from the identity 0 = F (x∗) − F (y∗) =
Q(x∗ − y∗) we deduce that x∗ = y∗. Similarly, if F (y∗) = 0 and y∗ ∈ U(x0, R),
we have that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤

K0

2
(R + t∗) < 1,

by (3.31). Hence, again we deduce that x∗ = y∗. �

Remark 3.3. (a) It follows from the proof of Theorem 3.2 that sequences
{t̄n}, {s̄n} defined by

t̄0 = 0, s̄0 = t̄0 + θη,

t̄1 = s̄0 + [
|1− θ

|θ3|
(1 + |1− θ2|) +

(s̄0 − t̄0)K0

2θ2
](s̄0 − t̄0),

s̄1 = t̄1+
|θ|

1−K0t̄1
[
K

2

|θ2 − 1|

θ2
(s̄0 − t̄0)

2K

2
(t̄1 − s̄0)

2+K0(s̄0 − t̄0)(t̄1 − s̄0)],

s̄n+1 = t̄n+1+
|θ|

1−K0t̄n+1

[
|θ2−1|

2θ2
(s̄n− t̄n)

2 (t̄n+1−s̄n)
2

2
+(s̄n− t̄n)(t̄n+1−s̄n)],

t̄n+2 = s̄n+1+
K

θ2(1−K0t̄n+1)
{|1−θ|(1+|1−θ2|)[

|θ2−1|

2θ2
(s̄n− t̄n)

2 (t̄n+1−s̄n)
2

2

+ (s̄n − t̄n)(t̄n+1 − s̄n)]
1

2
(s̄n+1 − t̄n+1)

2} for each n = 0, 1, 2, . . . .
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Then, a simple induction argument shows that

s̄n ≤ sn,

t̄n ≤ tn,

s̄n − t̄n ≤ sn − tn,

t̄n+1 − s̄n ≤ tn+1 − sn,

and

t̄∗ = lim
n→∞

t̄n ≤ t∗.

Clearly, {t̄n}, {s̄n}, t̄∗ can replace {tn}, {sn}, t∗ in Theorem 3.2.
(b) The limit point t∗ can be replaced by t∗∗ given in closed form by (3.9).
(c) Criteria (△) or (2.9) and (2.11) are sufficient for the convergence of the

third order method (1.2). However, these criteria are not also necessary. In
practice, we shall test to see which of these criteria are satisfied (if any) and
then use the best possible error bounds and uniqueness results (see also the
numerical examples in the next section).

4. Numerical examples

Example 4.1. Let x ∈ D,X = Y = R, x0 = 1 and D = U(1, 1). Define
function F on D by

(4.1) F (x) = x3 − 0.49.

Then, we get that

β =
1

3
, η = 0.17, M = 12.

Now choosing θ = 1.15 we obtain that

a = 0.68, α = 0.68, γ = 0.34

and as a consequence a1b1 = 134.091 ≤ 1 condition (2.9) is violated. Hence,
there is no guarantee under the conditions given in [7] that sequence {xn}
converges to x∗. Calculating now δf and δg, the smallest solutions of the
polynomials f(t) and g(t) given in (3.1) and (3.2) respectively between 0 and
1, we obtain that

δ = min{δf , δg} = .4104586 · · · .

Moreover, we observe that the ∆ conditions are satisfied since
∣∣∣∣
1− θ

θ3

∣∣∣∣ (1 + |1− θ2|) +
Kη

2θ
= .278261 · · · ≤ δ,

0 <
K|θ|

1−K0(1 + δ)s0

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
(s0 − t0) = .360324 · · · ≤ δ

and

0 <
K

θ2(1−K0(1 + δ)s0)
{|1−θ|(1+ |1−θ2|)

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
+

δ2

2
}(s0− t0)
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= .136162 · · · ≤ .168476 · · · = δ2.

Consequently, convergence to the solution is guaranteed by Theorem 3.2. More-
over, the computational order of convergence (COC) is shown in Table 1. Here
(COC) is defined by

ρ ≈ ln

(
‖xn+1 − x⋆‖∞
‖xn − x⋆‖∞

)
/ ln

(
‖xn − x⋆‖∞

‖xn−1 − x⋆‖∞

)
, n ∈ N,

Table 1 shows the (COC).

Table 1. COC for Example 1 using θ = 1.15.

n COC

1 2.73851

2 2.99157

3 2.99999

4 3.00000

5 3.00000

ρ = 3.00000

Example 4.2. Let X = Y = C[0, 1], the space of continuous functions defined
in [0, 1] equipped with the max-norm. Let Ω = {x ∈ C[0, 1]; ‖x‖ ≤ R}, such
that R > 1 and F defined on Ω and given by

F (x)(s) = x(s) − f(s)− λ

∫ 1

0

G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, λ is a real constant and the kernel G is
the Green function

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the
following expression:

[F ′(x)(v)](s) = v(s)− 3λ

∫ 1

0

G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f(s) = 1, it follows ‖I − F ′(x0)‖ ≤ 3|λ|/8. Thus, if
|λ| < 8/3, F ′(x0)

−1 is defined and

‖F ′(x0)
−1‖ ≤

8

8− 3|λ|
.

Moreover,

‖F (x0)‖ ≤
|λ|

8
,

‖F ′(x0)
−1F (x0)‖ ≤

|λ|

8− 3|λ|
.
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On the other hand, for x, y ∈ Ω we have

[(F ′(x) − F ′(y))v](s) = 3λ

∫ 1

0

G(s, t)(x(t)2 − y2(t))v(t) dt

and for x ∈ Ω we get in turn that

‖F ′′(x)‖ ≤
6|λ|

8
.

Consequently,

‖F ′(x) − F ′(y)‖ ≤ ‖x− y‖
3|λ|(‖x‖+ ‖y‖)

8
≤ ‖x− y‖

6R|λ|

8
,

‖F ′(x) − F ′(1)‖ ≤ ‖x− 1‖
1 + 3|λ|(‖x‖+ 1)

8
≤ ‖x− 1‖

1 + 3(1 +R)|λ|

8
.

Choosing λ = 1.5, R = 4.4 and θ = 1.1 we have

β = 0.677966 · · · ,

η = 0.127119 · · · ,

M = 4.95,

a = 0.426602 · · · ,

α = 1.16529 · · · ,

and

γ = 0.213301 · · · .

So, as a1b1 = 1.25402 ≤ 1, condition (2.9) is violated. Hence, there is no
guarantee under the conditions given in [7] that sequence {xn} converges to
x∗. Calculating now δf and δg, the smallest solutions of the polynomials f(t)
and g(t) given in (3.1) and (3.2) respectively between 0 and 1, we obtain that

δ = min{δf , δg} = 0.370693 · · · .

Moreover, we observe that the ∆ conditions are satisfied since
∣∣∣∣
1− θ

θ3

∣∣∣∣ (1 + |1− θ2|) +
Kη

2θ
= 0.284819 · · · ≤ δ,

0 <
K|θ|

1−K0(1 + δ)s0

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
(s0 − t0) = 0.334767 · · · ≤ δ

and

0 <
K

θ2(1−K0(1 + δ)s0)
{|1−θ|(1+ |1−θ2|)

[
|θ2 − 1|

2θ2
+

δ2

2
+ δ

]
+

δ2

2
}(s0− t0)

= 0.0871515 · · · ≤ 0.137413 · · ·= δ2.

Consequently, convergence to the solution is guaranteed by Theorem 3.2.
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[1] S. Amat, Á. A. Magreñán, and N. Romero, On a two-step relaxed Newton-type method,
App. Math. Comput. 219 (2013), no. 24, 11341–11347.

[2] I. K. Argyros, Computational theory of iterative methods, Series: Studies in Computa-
tional Mathematics, 15, Editors: C. K. Chui and L. Wuytack, Elsevier Publ. Co. New
York, U.S.A, 2007.

[3] I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton’s method,
J. Complexity 28 (2012), no. 3, 364–387.

[4] , Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp.,
New Jersey, 2013.

[5] V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: The

Halley method, Computing 44 (1990), no. 2, 169–184.
[6] , Recurrence relations for rational cubic methods II: The Chebyshev method,

Computing 45 (1990), no. 4, 355–367.
[7] C. Chun, P. Stanica, and B. Neta, Third order family of methods in Banach spaces,

Comput. Math. Appl. 61 (2011), no. 6, 1665–1675.
[8] J. A. Ezquerro and M. A. Hernández, Recurrence relations for Chebyshev-type methods,

Appl. Math. Optim. 41 (2000), no. 2, 227–236.
[9] J. M. Gutiérrez and M. A. Hernández, Recurrence relations for the super-Halley method,

Computers Math. Appl. 36 (1998), no. 7, 1–8.
[10] , Third-order iterative methods for operators with bounded second derivative, J.

Comput. Appl. Math. 82 (1997), no. 1-2, 171–183.
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