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ZEROS OF SOLUTIONS OF SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS WITH
COEFFICIENTS OF SMALL LOWER GROWTH

WANG SHENG

ABSTRACT. It is proved that the product of any two linearly inde-
pendent meromorphic solutions of second order linear differential
equations with coefficients of small lower growth must have infinite
exponent of convergence of its zero-sequences, under some suitable
conditions.

1. Introduction

Let f(z)(# 0) be an entire solution of equation (1)
(1) "+ AR)f =0,

where A(z) is a transcendental entire function of finite order. The upper
and lower growth orders of f(z) denote by respectively,

: log™ T'(r, f)

o(f) = h?{liigp “—1@7*

.. 10g+ T(Tv / )

p(f) = lim inf “Togr
where T'(r, f) is the characteristic function of f(z) in the sense of Nevan-
linna theory, see [4]. When ¢(A) < 1, Bank and Laine in [2] applied
Wiman-Valiron theory to proving that the product of any two linearly
independent solutions of equation (1) must have infinite exponent of
convergence of its zero-sequences. When ¢(4) = 2 and o(4) is not an
integer, Shen in [10] and Rossi in [9] independently concluded the same
result. When o(A) > 3 and o(A) is not an integer, Bank and Laine
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conjectured that the same result is valid. But, it still remains an open
question.

In this note, we consider that the coefficients of second order linear
differential equations are meromorphic of lower order less than % and of
finite order, and prove the same result, under some suitable conditions.
The exponent of convergence of zeros of f(z) is defined by

+ 1
A(f) = limsup &2 7)
r—00 logr
where N(r, %) is the counting function of zeros of f(z) in {|z| < r}.
N(r, f) is the counting function of poles of f(z) in {|z| < r},m(r, f)
is the proximity function of f(z), the Nevanlinna deficience of f(z) at
infinity is expressed as

it ™D i s N )
oo )=ty =1 TP T )

see [4]. Our main result is stated as follows.

THEOREM. Let B(z) be a transcendental meromorphic function with
o(B) < 00, and A(§) < u(B) < o < 1, for some constant o. If fy, f2
are two linearly independent meromorphic solutions of equation (2) with
N(T3 f1f2) < O(N(T, B))? r— 0,

(2) '+ B(2)f =9,
then max{\(f1),A(f2)} = o0.

By our Theorem, we immediately deduce the following result.

COROLLARY. If u(A) < %—, then the product of any two linearly

independent solutions of equation (1) must have infinite exponent of
convergence of its zero-sequences.

Let y(z) be entire in the complex plane C. For an unbounded subset
Uof C,if
log [y(z)| # O{log |z},
z € U, as |z| — oo, then we say that y(z) grows transcendentally on U.
The minimum and maximum moduluses of y(z) are defined respectively

by
L{r,y) = ;if‘:fr{ly(z)”’

and
M(r,y) = sup{|y(2)|}.

lzl=r
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R-set'3®] denotes a countable union of disc sequences {|z — zn| < Tn},
where z, — 0o asn — oo and Y oo ;7 < 00.

Let y(z) # 0 be meromorphic of finite order in the complex plane.
Then, it is known that there exists a constant ¢ > 0 such that

Y= _ o1,1e
(3) Iy(z) | = O(|2])

for all z outside a R-set(®.
The idea of the proof of our Theorem is from [6].

2. Proof of theorem

In order to prove our theorem, we need the following results.

From the similar proof of the Lemma A in [1], and noting that every
pole of any meromorphic solution of equation (2) must be one of B(z)’s,
we can deduce the result as follows, with completed details omitted.

LEMMA 1. Let C(z) be a transcendental meromorphic function of
finite order, and wi(z), w2(z) be two linearly independent meromorphic
solutions of the following equation

w” + C(z)w = 0.
If M(wywe) < 00, then wi(z), w2(z) can be expressed as
w1(2) = G1(2)e9®) | wy(2) = Ga(2)e™9),
where G1(z),G2(z) are non-zero meromorphic functions of finite order,

and g(z) is a transcendental entire function.

LeEMMA 2. [8] Let m and n be positive integers and let fi,-+-, fm
and g1, - ,gn be meromorphic functions on a domain D. Then the
following Wronskian holds on D

W(fly"' af'magl,"' agn)W(fla >fm)n_1
= W(W(flv 7fm’gl)"" ,W(flu"' afmagn))

The following result may be refered to [6].

LEMMA 3. Let
f](Z) = Gj(z)egj(Z)vj = 1)2a' R

be meromorphic functions, and linearly independent, where G;(j =
1,+--,n) are meromorphic of finite order, g;(j = 1,--+ ,n) are entire.
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Suppose that if for an unbounded subset U of C such that g, — g; or
9;(j =1,2,--- ,n~ 1) grows transcendentally on U, then

W(f1, -, fo=2, fa-1, fn)
an(fla e afn—27fn—1)

grows transcendentally on U\ R-set.

Proof. We apply the mathematical induction method to the proof of
Lemma 3.
Let n = 2, then

W(fl:f?)__G_,g__,l r
@ RW(fi) G2 G T o

By (3), it follows
Gj M
2| =0 i=1,2

on U\D;, where D is a R-set in the complex plane, M is a positive
number. From (4)

P W(fl) f2) M
lg2 gl| S l fZW(fl) |+O(|Z‘ )’
it follows
W(fla f2)
) W)

grows transcendentally on U\D,, where D; is a R-set.
Let n > 3. Assume that

(6) W(fla"' ,fn—2,fn—1)
FnaaW(f1,+++, fa2)
grows transcendentally onU\ D3, where D3 is a R-set. Then by Lemma 2
W(f1, - fae2, fue1, fA)W(f1, -+, fa—2)
=WW(f1,» fa2, 1), W(f1, -, frn2, fn)),

it follows
W(fl"" afn—27fn—17fn)
W (f1,+, fr2, fa-1)
_ W(W(fh 7fn—2’fn—1)aW(f1"" ’fn—2,fn)) . W(fl"" ,fn—Z,fn)
W, faas facOW (s freas fa) W (f1yo  fa2)

According to the hypotheses of Lemma 3, we may set
W(fla STt f'n-—23 fn——l) = Hleh13
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W(f17 e ,fn—27 f’n) = H2eh27
where H; and Hy are entire of finite order, and hy, — b} =g}, — g/,_; or
9;,_1 grows transcendentally on U\Dy, where Dy is a R-set. Similarly,
from the proof of (4), it follows that

W(W(flﬁ 7fn—2’fn—1):W(f1a"' ’fn—27fn))
W(fl)"' ’fn—27fn—1)W(f1')"' 7f'n—27fn)

grows transcendentally on U\Ds, where D5 is a R-set. By (5) and (6),

W(flv e 7fn—2,fn)
an(flv Tt afn—?)

grows transcendentally on U\ Dg, where Dg is a R-set.

Thereafter, we deduce that

W(f17 e 7fn—2, f'rl—la fn)
an(.fla T afn—2, f'n—-l)

grows transcendentally on U\ D7, where D7 is a R-set. Lemma 3 follows.
O

Proof of theorem. Assume that fi, fo are two linearly independent
solutions of equation (2), with

max {A(f;)} < oo.

By Lemma 1, set
f1(z) = G1(2)e9?) | falz) = Ga(2)e™ 93,

where Gj(z) # 0(j = 1, 2) are meromorphic of finite order, g(z) is entire,

and set B
H1 2
G1 ()G = =
(G = 15
where H;(z), Ha(z) are the canonical products of zeros and poles of
f1(2) f2(2) respectively. Substituting fi(z) into equation (2), we have

Glll(z) Gll (2) | 9"(2) ' '
= 2 + + ,
G GG S @)
and then for some d > 0,
|B(2)] < (0{]2|%} +lg'(2)))]g' ()],
outside a R-set, say D;. And then
(7) log*log™ |B(z)| <log*log™ |¢'(2)| + Ologlog |z|), z & D1.

—B(2)
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Since A(%) < p(B) implies that §(co, B) = 1, from (9) in [7], we have

(8) logL(r,B) > Siaﬂ- (cosam + 6(0c0,B) — 1)T(r,B), r € E,

nom
where
1
lim sup —— d oy _HB)
r—oo 1087 JEn(0r) t a

Hence, it follows, from (7) and (8), that ¢’(z) grows transcendentally on
{z € C:|z| € E}\D;. By Lemma 3,

W(f1, f2)
©) fi- fo

grows transcendentally on {z € C : |2| € E}\Dy, where D; is a R-set.
Noting that the Wronskian of fi(z) and fa(z2),

W(f1, f2)

is identically non-zero constant ¢, from (9), as z ¢ Dy and |2| — oo in
E, we have

c _ Hz(z)

- eren " me T

If H1(z) = const.(# 0), for some constant 8 > 1, we get
B < ).

If Hy(z) # const., then take a series of points, say, {z,} C{z € C:|z| €
EWN{D;, U D3}, z, — 00, as n — 00, such that

|H1(Zn)l 21, n= 1,2,--- )

and then

o

From (9) and (10), we have

(12) G,2(z) _ Gll(z) H2(Z)

Ga(z)  Gi(z) §'(z) = Hi(z)
Combining (11) and (12), it follows
(13) 2lg'(2n)| < BlHa(2n)| + O(|2n]%), n=1,2, -

| < B|Ha(zn)|, n=1,2,---.
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for some positive number q. Therefore, from (7), (8) and (13), we obtain
lim’n—-)OO 10g+ T(|2nl,B) < limn__)oo 10g+ log* L(jzn|,B)

log |zn Toz o
< limpoeo %&J[(A)I
< limpoeo iog” loglzgzl\ir(xllznl,Hﬂ
< limsup,_, k’_gf_llt\g:’_ﬂl_z)
< limsup,_, k’g“l(f\’% '
This contradicts to )\(%) < w(B). The proof is complete. O
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