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ON A LOCAL CHARACTERIZATION OF SOME

NEWTON-LIKE METHODS OF R-ORDER AT LEAST

THREE UNDER WEAK CONDITIONS IN BANACH

SPACES

Ioannis K. Argyros* and Santhosh George**

Abstract. We present a local convergence analysis of some Newton-
like methods of R-order at least three in order to approximate a so-
lution of a nonlinear equation in a Banach space. Our sufficient
convergence conditions involve only hypotheses on the first and
second Fréchet-derivative of the operator involved. These condi-
tions are weaker that the corresponding ones given by Hernandez,
Romero [10] and others [1], [4]-[9] requiring hypotheses up to the
third Fréchet derivative. Numerical examples are also provided in
this study.

1. Introduction

Many problems in computational sciences and other disciplines are
offen led to the problem of approximating a solution x∗ of the nonlinear
equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a subset D of a
Banach space X with values in a Banach space Y.

Newton-like iterative methods [1]-[13] are used to approximate a so-
lution of (1.1) because solutions of these equations can rarely be found
in closed form. The study about convergence matter of iterative proce-
dures is usually based on two types: semi-local and local convergence
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analysis. The semi-local convergence matter is, based on the informa-
tion around an initial point, to give conditions ensuring the convergence
of the iterative procedure; while the local one is, based on the infor-
mation around a solution, to find estimates of the radii of convergence
balls. There exist many studies which deal with the local and semilocal
convergence analysis of Newton-like methods such as [1]-[13].

We present a local convergence analysis for the method defined for
each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − αHnF
′(xn)−1F (xn),(1.2)

where x0 is an initial point, α is a real parameter, Kn = F ′(xn)−1F ′′(xn)
F ′(xn)−1F (xn), Hn = 1

2Kn+
∑

k≥2 ckK
k
n and {ck} ∈ R. Clearly, method

(1.2) is well defined, if operator H is well defined. One has that the
operator H is,

H(K−)) : D
K

−→
L(D,D)

H

−→
L(D,D),

where it is associated to each xn a plolynomial in Kn. That is

Hn = H(Kn) =
∑
k≥1

ckK
k
n,

where c1 = 1
2 . We also denote by Kk

n the composition K(x)k = K(x)︷ ︸︸ ︷
◦ · · · ◦K(x), which is a linear operator in D.

It is worth noticing that if α = 1 and X = Y = R method (1.2)
reduces (by choosing Hn appropriately) to well known high convergence
order methods for solving equation (1.1). In particular, we have:

• Chebyshev’s method [5], [6]: Hn = 1
2Kn;

• Super-Halley method [8], [2]: Hn = 1
2Kn +

∑
k≥2

1
2K

k
n;

• Halley method [8], [2]: Hn = 1
2Kn +

∑
k≥2

1
2k
Kk

n;

• Ostrowski’s method [9]: Hn = 1
2Kn +

∑
k≥2(−1)k(

− 1
2
k

)Kk
n;

• Euler’s method [9]: Hn = 1
2Kn +

∑
k≥2(−1)k2k+1(

1
2

k+1
)Kk

n;

• Method (1.2) (for α = 1)[10]: Hn = 1
2Kn +

∑
k≥2 ckK

k
n; where

{ck} is a real decreasing sequence with

(1.3)
∑
k≥2

ckt
k < +∞ for |t| < γ for some γ > 0.

If one writes method (1.2) in the form (for α = 1 and X = Y = R)

(1.4) xn+1 = G(xn),
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where

G(t) = t−H(K(t))F ′(t)−1F (t),

then, method (1.3) has R−order of convergence at least three: Let x∗

be a simple root of F and H a function such that H(0) = 1, H ′(0) = 1
2

and |H ′′(t)| < ∞. Then, method (1.4) has R−order of convergence at
least three (see, e.g. Gander [9]). A semilocal convergence analysis for
method (1.2) in the special case when α = 1 and when (1.3) is satisfied
was given by Hernandez and Romero in [10]. The semilocal convergence
conditions used are (C): There exist constants β, β1, β2, β3 and x0 ∈ D
such that:

(C1) ‖F ′(x0)−1‖ ≤ β;
(C2) ‖F ′(x0)−1F (x0)‖ ≤ β1;
(C3) ‖F ′(x0)−1F ′′(x)‖ ≤ β2 for each x ∈ D; and
(C5) ‖F ′(x0)−1(F ′′(x)− F ′′(y))‖ ≤ β3‖x− y‖ for each x, y ∈ D.

The (C) conditions were presented [10] in non affine invariant form. How-
ever, we present these conditions in affine invariant form in this study.
The advantages of results given in invariant form over the results given
in non affine invariant form are well known (see, e.g. [2]). Local conver-
gence conditions can be given similarly by simply replacing x0 by x∗ in
the (C) conditions.

However, conditions (C) for the semilocal or local convergence anal-
ysis are very restrictive. As an academic example, let us define function
Fon X = [−1

2 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0

Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously function F does not satisfy condition (C5). In the
present paper we only use hypotheses up to the second Fréchet de-
rivative (see (2.9)–(2.13)). We also avoid condition (1.3). Hence, the
applicability of method (1.2) is extended.

The paper is organized as follows. The local convergence of method
(1.2) is given in Section 2, whereas the numerical examples are given in
the concluding Section 3.
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2. Local convergence analysis

We present the local convergence analysis of method (1.2) in this
section. Let U(v, ρ), Ū(v, ρ) denote the open and closed balls in X of
center v and radius ρ > 0.

Let L0 > 0, L > 0, M > 0, N > 0 and α ∈ (−∞,+∞) be given
parameters. It is convenient for the local convergence analysis of method
(1.2) that follows to introduce functions defined on the interval [0, 1

L0
)

by

g1(r) =
Lr

2(1− L0r)
,

g2(r) =
MN

(1− L0r)2
.

Define

(2.1) rA :=
2

L+ 2L0
.

Then, it follows from the definition of function g1 and rA that 0 ≤
g1(r) < 1 for each r ∈ [0, rA). Let {ck} be a real sequence such that

(2.2) γ(r) :=
MNr

(1− L0r)2
lim
k→∞

|ck+1

ck
< 1 for each r ∈ (0,

1

L0
).

Then, the function

(2.3) ϕ(r) =
∑
k≥2

ck

(
MN

(1− L0r)2

)k

rk−1

is well defined on the interval (0, 1
L0

). Indeed, we have by the ratio test

and (2.2) that

lim
k→∞

(MN)k+1rk

(1−L0r)2(k+1)

(MN)krk−1

(1−L0r)2k

ck+1

ck
= γ(r)(< 1.

Hence, function ϕ is well defined on the interval (0, 1
L0

). Moreover, define

functions g3 and g4 on the interval (0, 1
L0

) by

(2.4) g3(r) =
1

2
g2(r) + ϕ(r)

and

g4(r) =
1

2(1− L0r)
[L+ 2|α|Mg3(r)]r.
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Evidently g4(r) ∈ [0, 1), if function

p4(r) = (L+ 2|α|Mg3(r))r − 2(1− L0r) < 0

for each r ∈ (0, 1
L0

). We have that p4(0) = −2 < 0 and

p4((
1

L0
)−) =

1

L0
(L+ 2|α|Mg3(

1

L0
)−) > 0,

since g3((
1
L0

)−) > 0. It follows that p4 (i.e g4) has zeros in the interval

(0, 1
L0

). Denote by r∗ the smallest such zero. Then, we have that

0 < g4(r) < 1 for each r ∈ (0, r∗).

It follows from the definition of function p4 and rA that

p4(rA) = (L+ 2|α|Mg3(rA))rA − 2(1− L0rA)

= LrA − 2(1− L0rA) + 2|α|Mg3(rA)rA

= 2|α|Mg3(rA)rA > 0,

since LrA − 2(1 − L0rA) = 0 by (2.1). That is, we have that r∗ < rA.
Hence, we deduce that

(2.5) 0 < g1(r) < 1

(2.6) 0 < g2(r)

(2.7) 0 < g3(r)

and

(2.8) 0 < g4(r) < 1 for each r ∈ (0, r∗).

Next, we present the local convergence analysis of method (1.2).

Theorem 2.1. Let F : D ⊆ X → Y be a twice Fréchet-differentiable
operator. Suppose that there exist x∗ ∈ D, parameters L0 > 0, L >
0,M > 0, N > 0, α ∈ (−∞,+∞) {ck} ∈ R such that (2.2) and the
following conditions hold for each x ∈ D
(2.9) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),

(2.10) ‖F ′(x∗)−1(F (x)− F (x∗))‖ ≤ L0‖x− x∗‖,

(2.11) ‖F ′(x∗)−1(F (x)− F (x∗)− F ′(x)(x− x∗)‖ ≤ L

2
‖x− x∗‖2,

(2.12) ‖F ′(x∗)−1F ′(x)‖ ≤M,

(2.13) ‖F ′(x∗)−1F ′′(x)‖ ≤ N
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and

(2.14) Ū(x∗, r∗) ⊆ D,

where r∗ is defined above Theorem 2.1. Then, the sequence {xn} gen-
erated by method (1.2) for x0 ∈ U(x∗, r∗) is well defined, remains in
U(x∗, r∗) for each n = 0, 1, 2, · · · and converges to x∗. Moreover, the
following estimates hold for each n = 0, 1, 2, · · · ,

(2.15) ‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r∗,

(2.16) ‖Kn‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖,

(2.17) ‖Hn‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖

and

(2.18) ‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖,

where the “g′′ functions are defined above Theorem 2.1. Furthermore,
suppose that there exists T ∈ [r, 2

L0
) such that Ū(x∗, T ) ⊂ D, then the

limit point x∗ is the only solution of equation F (x) = 0 in Ū(x∗, T ).

Proof. Using (2.10), the definition of r∗ and the hypothesis x0 ∈
U(x∗, r∗) we get that

(2.19) ‖F ′(x∗)−1(F (x0)− F (x∗))‖ ≤ L0‖x0 − x∗‖ < L0r
∗ < 1.

It follows from (2.19) and the Banach Lemma on invertible operators
[2, 11] that F ′(x0)

−1 ∈ L(Y,X) and

(2.20) ‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
<

1

1− L0r∗
.

Hence, y0 and x1 are well defined. Using the first substep in method
(1.2) for n = 0, (2.11),(2.21), (2.5) and definition of r∗, we have in turn
that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= −F ′(x0)−1F ′(x∗)F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]

so,

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,
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which shows (2.15) for n = 0 and y0 ∈ U(x∗, r). It follows from the
definition of K0, g2, (2.12), (2.13) and (2.21) that

‖K0‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′′(x0)‖

×‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dt‖

≤ MN‖x0 − x∗‖
(1− L0‖x0 − x∗‖)2

= g2(‖x0 − x∗‖)‖x0 − x∗‖,

which shows (2.16) for n = 0. Moreover, using the definition of H0, h2, ϕ,
(2.16), g3, we get that

‖H0‖ ≤
1

2
‖K0‖+

∑
k≥2
|ck|‖K0‖k

≤ 1

2
g2(‖x0 − x∗‖)|x0 − x∗‖+

∑
k≥2
|ck|gk2 (‖x0 − x∗‖)‖x0 − x∗‖k

= g3(‖x0 − x∗‖)‖x0 − x∗‖,
which shows (2.17) for n = 0. Furthermore, from the second substep of
method (1.2) for n = 0, (2.15), (2.17), (2.12), (2.8) the definition of g4
and r∗ we get that

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+ |α|‖H0‖‖F ′(x0)−1F ′(x∗)‖

×‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dt‖

≤ [
L

2(1− L0‖x0 − x∗‖)
+
M |α|g3(‖x0 − x∗‖)

1− L0‖x0 − x∗‖
]‖x0 − x∗‖2

≤ g4(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r∗,

which shows (2.18) for n = 0 and x1 ∈ U(x∗, r). By simply replacing
y0, x1 by ym, xm+1 in the preceding estimates we arrive at estimates
(2.15)-(2.18). Finally, from the estimates ‖xk+1 − x∗‖ < ‖xk − x∗‖ we
obtain limk→∞ xk = x∗.

To show the uniqueness part, let Q =
∫ 1
0 F

′(y∗ + θ(x∗ − y∗)dθ for

some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.10) we get that

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0
(1− θ)|x∗ − y∗|dθ ≤ L0

2
R < 1.(2.21)



520 Ioannis K. Argyros and Santhosh George

It follows from (2.11) and the Banach Lemma on invertible functions
that Q is invertible. Finally, from the identity 0 = F (x∗) − F (y∗) =
Q(x∗ − y∗), we deduce that x∗ = y∗.

Remark 2.2. 1. In view of (2.10) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖

condition (2.12) can be dropped and M can be replaced by

M(r) = 1 + L0r.

2. The reults obtained here can be used for operators F satisfying
autonomous differential equations [2, 3] of the form

F ′(x) = T (F (x))

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) =
T (0), we can apply the results without actually knowing x∗. For
example, let F (x) = ex − 1. Then, we can choose: T (x) = x + 1.
Moreover, (2.11) can be replaced by the popular stronger condi-
tions

(2.22) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖ for each x, y ∈ D

or

‖F ′(x∗)−1(F ′(x∗ + t(x− x∗))− F ′(x))‖ ≤ L(1− t)‖x− x∗‖

for each x, y ∈ D and t ∈ [0, 1].
3. The local results obtained here can be used for projection methods

such as the Arnoldi’s method, the generalized minimum residual
method (GMRES), the generalized conjugate method(GCR) for
combined Newton/finite projection methods and in connection to
the mesh independence principle can be used to develop the cheap-
est and most efficient mesh refinement strategies [2, 3].

4. The parameter rA given in (2.4) was shown by us to be the con-
vergence radius of Newton’s method [2, 3, 11]

(2.23) xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · ·

under the conditions (2.10) and (2.2). Since, r∗ < rA the con-
vergence radius r of the method (2.2) cannot be larger than the
convergence radius rA of the second order Newton’s method (2.23).
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As already noted in [2, 3] rA is at least as large as the convergence
ball given by Rheinboldt [12]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < rA

and
rR
rA
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than
Rheinboldt’s. The same value for rR was given by Traub [13].

5. It is worth noticing that method (1.2) is not changing when we
use the conditions of Theorem 2.1 instead of the stronger (C) con-
ditions used in [10]. Moreover, we can compute the computational
order of convergence (COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way
that avoids the bounds given in [10] involving condition (C5).

3. Numerical examples

We present numerical examples in this section.

Example 3.1. Let X = Y = R2, D = Ū(0, 1), x∗ = (0, 0)T and define
function F on D by

(3.1) F (x) = (sinx,
1

3
(ex + 2x− 1))T .

Then, using (2.9)-(2.13), we get L0 = L = N = 1, M = 1
3(e + 2). The

parameters are given in Table 1.

Example 3.2. Let X = Y = R3, D = U(0, 1). Define F on D for
v = (x, y, z)T by

(3.2) F (v) = (ex − 1,
e− 1

2
y2 + y, z)T .
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parameters α = 1 α = 0.01
rA 0.6667 0.6667
ck ( 1

5.6619)k ( 1
5.6619)k

r∗ 0.1512 0.3392
ξ1 2.9246 1.9748

Table 1. Parameters of methods (1.2) for α = 1 and
α = 0.01

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0), F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e −
1 < L = e, M = N = e. The parameters are given in Table 2.

parameters α = 1 α = 0.01
rA 0.3249 0.3249
ck ( 1

10.3206)k ( 1
10.3206)k

r∗ 0.0368 0.0877
ξ1 1.9909 1.9247

Table 2. Parameters of methods (1.2) for α = 1 and
α = 0.01

Example 3.3. Returning back to the motivational example at the in-
troduction of this study, we have L0 = L = 146.6629073, M = 101.5578008 =
N. The parameters are given in Table 2.

parameters α = 1 α = 0.01
rA 0.0045 0.0045
ck ( 1

168.77)k ( 1
168.77)k

r∗ 0.0007 0.0031
ξ1 0.9999 1.0000

Table 3. Parameters of methods (1.2) for α = 1 and
α = 0.01



On a local characterization of some Newton-like methods of R-order 523

References

[1] S. Amat, M. A. Hernández, and N. Romero, A modified Chebyshev’s iterative
method with at least sixth order of convergence, Appl. Math. Comput. 206,
(2008), no. 1, 164-174.

[2] I. K. Argyros, Convergence and Application of Newton-type Iterations,
Springer, 2008.

[3] I. K. Argyros and S. Hilout, A convergence analysis for directional two-step
Newton methods, Numer. Algor. 55 (2010), 503-528.

[4] V. Candela and A. Marquina, Recurrence relations for rational cubic methods
I: The Halley method, Computing 44 (1990), 169-184.

[5] V. Candela and A. Marquina, Recurrence relations for rational cubic methods
II: The Chebyshev method, Computing 45 (1990), no. 4, 355-367.

[6] J. A. Ezquerro and M. A. Hernández, Recurrence relations for Chebyshev-type
methods, Appl. Math. Optim. 41 (2000), no. 2, 227-236.

[7] J. A. Ezquerro and M.A. Hernández, New iterations of R-order four with re-
duced computational cost., BIT Numer. Math. 49 (2009), 325-342.

[8] J. A. Ezquerro and M. A. Hernández, On the R-order of the Halley method, J.
Math. Anal. Appl. 303 (2005), 591-601.

[9] W. Gander, On Halley’s iteration method, Amer. Math. Monthly 92 (1985),
131-134.

[10] M. A. Hernandez and N. Romero, On a characterization of some Newton-like
methods of R-order at least three, J. Comput. Appl. Math. 183 (2005), 53-66.

[11] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press,
Oxford, 1982.

[12] W. C. Rheinboldt, An adaptive continuation process for solving systems of
nonlinear equations, In: Mathematical models and numerical methods (A. N.
Tikhonov et al. eds.) pub. 3, (19), 129-142 Banach Center, Warsaw Poland.

[13] J. F. Traub, Iterative methods for the solution of equations, Prentice Hall En-
glewood Cliffs, New Jersey, USA, 1964.

*
Department of Mathematicsal Sciences
Cameron University
Lawton OK 73505, USA
E-mail : iargyros@cameron.edu

**
Department of Mathematical and Computational Sciences
National Institute of Technology Karnataka
India-757 025
E-mail : sgeorge@nitk.ac.in


