• Title/Summary/Keyword: optimized

Search Result 12,932, Processing Time 0.055 seconds

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Continuous Production of Fish Skin Gelatin Hydrolysate Using a Two-Stage Membrane Ractor (2단계 막반응기를 이용한 어피젤라틴 가수분해물의 연속적 생산)

  • Kim, Se-Kwon;Byun, Hee-Guk;Jeon, You-Jin;Yang, Hyun-Phil;Jou, Duk-Je
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.130-141
    • /
    • 1994
  • A continuous two-stage membrane (1st-SCMR, MWCO 10,000; 2nd-SCMR, MWCO 5,000) reactor was developed and optimized for the production of fish skin gelatin hydrolysate with different molecular size distribution profiles using trypsin and pronase E. The optimum operating conditions in the 1st-step membrane reactor using trypsin were: temperature, $55^{\circ}C$ ; pH 9.0; enzyme concentration, 0.1 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to trypsin, 100 (w/w). After operating for 1 hr under the above conditions, 79% of total amount of initial gelatin was hydrolysed. In the 2nd-step using pronase E under optimum operating conditions[temperature, $50^{\circ}C$ ; pH 8.0; enzyme concentration, 0.3 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to pronase E, 33 (w/w)], the 1st-step hydrolysate was hydrolysed above 80%. Total enzyme leakages in the 1st-step and 2nd-step membrane reactors were about 11.5% at $55^{\circ}C$ for 5hrs and 9.0% at $50^{\circ}C$ for 4 hrs, respectively. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on activity lose of trypsin and pronase E activity for 1 hr of the membrane reactors operation. The loss of initial activity of enzymes were 34% and 18% in the 1st-step and 2nd-step membrane reactor, whereas were 23% and 10% after operating time 3 hr in the 1st-step and 2nd-step membrane reactor lacking the membrane, respectively. The productivities of 1st-step and 2nd-step membrane reactor for 8 times of volume replacement were 334 mg and 250 mg per mg enzyme, respectively.

  • PDF

Arsenic Speciation and Risk Assessment of Miscellaneous Cereals by HPLC-ICP-MS (HPLC-ICP-MS를 활용한 잡곡의 비소 화학종 및 위해 분석)

  • An, Jae-Min;Hong, Kyong-Suk;Kim, Sung-Youn;Kim, Dae-Jung;Lee, Ho-Jin;Shin, Hee-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.119-128
    • /
    • 2017
  • BACKGROUND: Miscellaneous cereal have been largely consumed in Korea as due to their physiological functions beneficial to human health. The cereals are currently a social concern because they have been found to contain heavy metals. Thus, monitoring heavy metals in the cereals is an important requirement for food safety analysis. In this study, we determined arsenic concentration in the cereals randomly harvested from different markets. METHODS AND RESULTS: Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection and recover test to reach $0.13-1.24{\mu}g/kg$ and 94.3-102.1%, respectively. The concentrations of inorganic arsenic equivalent to daily exposure were levels of $19.91{\mu}g/day$ in mixed grain, $1.07{\mu}g/day$ in glutinous rice, $0.77{\mu}g/day$ in black brown rice, $0.13{\mu}g/day$ in barley and $0.11{\mu}g/day$ in soybeans. CONCLUSION: The levels of arsenic in miscellaneous cereals were found lower than the recommended The Joint FAO/WHO Expert Committee on Food Additives (JECFA) levels, suggesting that the cereals marketed in Korea are not potential concern in risk assessment.

Expression of NGF in Estradiol Valerate-Induced Polycystic Ovary and CHO Cells (Estradiol Valerate에 의해 유도된 다낭성난소와 CHO세포에서 NGF발현)

  • Choi, Baik-Dong;Jeong, Soon-Jeong;Jeong, Moon-Jin;Lim, Do-Seon;Lee, Soo-Han;Kim, Seung-Hyun;Go, A-Ra;Kim, Se-Eun;Kang, Seong-Soo;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • Polycystic ovary syndrome (PCOS) is hormonal imbalance condition as the endocrine and metabolic disorder that induces the infertility and various complications in reproductive age women. Estradiol valerate (EV) is used hormone replacement therapy in menopausal women and is reported that excessive administration of EV induces the PCOS. Nerve growth factor (NGF) is the factor to regulate the survival and maturation of developing neuronal cell and is also synthesized in ovary. And NGF is overexpressed in EV-induced polycystic ovary (PCO) as previously reported. Therefore, this study examined the possibility of NGF as can be used the biological marker in diagnosis of PCOS, the hormonal imbalance condition, using PCO and CHO (chinese hamster ovarian) cell lines. The concentration of EV treatment is optimized a 1 mg as not influence on the proliferation of CHO cell but 2 mg and 3 mg of EV treatment have the inhibition effect at initial stage. The morphological change was not observed in CHO cell after dose dependent manner treatment of EV. Expression of NGF mRNA and protein is significantly increased at 30 min after EV treatment in CHO cells compared to that of control. And NGF protein expression is strongly increased in PCO tissue, which observed many follicular cysts compared to normal ovary tissue. Taken together, overexpression of NGF may be act as a molecule to induce an abnormal development of follicle, suggesting that NGF can be used as a biological marker in diagnosis of PCOS.

Establishment of Choline Analysis in Infant Formulas and Follow-up Formulas by Ion Chromatograph (이온크로마토그래프를 이용한 조제유류 및 영아용·성장기용 조제식 중 콜린 함량 분석법 연구)

  • Hwang, Kyung Mi;Ham, Hyeon Suk;Lee, Hwa Jung;Kang, Yoon Jung;Yoon, Hae Seong;Hong, Jin Hwan;Lee, Hyoun Young;Kim, Cheon Hoe;Oh, Keum Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.411-417
    • /
    • 2017
  • This study was conducted to establish the analysis method for the contents of choline in infant formulas and follow-up formulas by ion chromatograph (IC). To optimize the method, we compared several conditions for extraction, purification and instrumental measurement using spiked samples and certified reference material (CRM; NIST SRM 1849a) as test materials. IC method for choline was established using Ion Pac CG column and 18 mM $H_2SO_4$ mobile phase. The parameters of validation were specificity, linearity, LOD, LOQ, recovery, accuracy, precision and repeatability. The specificity was confirmed by the retention time and the linearity, $R_2$ was over 0.999 in range of 0.5~10 mg/L. The detection limit and quantification limit were 0.14, 0.43 mg/L. The accuracy and precision of this method using CRM were 95%, 2.1% respectively. Optimized methods were applied in sample analysis to verify the reliability. All the tested products were acceptable contents of choline compared with component specification for nutrition labeling. The standard operating procedures were prepared for choline to provide experimental information and to strengthen the management of nutrient in infant formula and follow-up formula.

Establishment of an Analytical Method for Novobiocin in Livestock Products Using HPLC-UVD (HPLC-UVD를 이용한 축산식품 중 Novobiocin의 시험법 확립)

  • Park, Hee-Ra;Kwon, Chan-Hyeok;Lee, Jong-Goo;Kim, Hyung-Soo;Chae, Young-Sik;Oh, Jae-Ho;Kwon, Ki-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.263-268
    • /
    • 2012
  • Novobiocin is a coumarin-containing antibiotic, and has a longer half-life in various animals than other veterinary medicines. A simple and rapid high-performance liquid chromatography assay for the determination of residual novobiocin levels in chicken, beef and milk has been developed and validated. The separation condition for HPLC/UVD was optimized by a MG II $C_{18}$ (4.6 mm $ID{\times}250$ mm, 5 ${\mu}m$) column with 0.1% formic acid in $H_2O$/0.1% formic acid in Acetonitrile (40/60, v/v) as the mobile phase at a flow rate of 1.0 mL/min and the detection wavelength was set at 340 nm. Residues were extracted from tissue by blending with methanol. After liquid-liquid partitioning, lipid materials were removed with n-hexane and purification as Silica (1 g, 6 mL) cartridge with 10 mL acetone/dichloromethane (10/90, v/v). Limit of quantification and linearity performed by the analytical method were 0.02 mg/kg and 0.999 ($r^2$), and the recovery range was $88.8{\pm}5.6-100.3{\pm}4.4$, $88.8{\pm}7.2-97.0{\pm}3.2$ and $88.1{\pm}4.3-92.8{\pm}3.6%$. It is expected that this analytical method with regards to novobiocin in chicken, beef and milk could be applied as an official method to administer food safety on veterinary medicines.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Optimization of Heteropolysaccharide-7 Production by Beijerinckia Indica (Beijerinckia Indica 배양을 통한 Heteropolysaccharide-7 생산 최적화)

  • Wu Jian-Rong;Son Jeong Hwa;Kim Ki Myong;Nam Soo-Wan;Lee Jin-Woo;Kim Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • Beijerinckia indica was cultured in mineral salts medium (MSM) medium with various carbon and nitrogen sources to improve the production yield of heteropolysaccharide-7 (PS-7). At high C/N ratio, the high concentration of PS-7 was produced until 40 h of the culture, whereas most of the glucose as a carbon source was used for the cell growth at low C/N ratio. However, at the high C/N ratio, PS-7 accumulation stopped at 48 h of the culture due to the increasing viscosity of the culture broth would inhibit the cell growth. Therefore, the optimized value of C/N ratio was 33.3 (20 g/L glucose, 7.5 mM $NH_{4}NO_3$) for the high production of PS-7. In the culture with various carbon sources, B. indica effectively used the hexoses or glucose-generating sugars for PS-7 formation. Especially, sucrose was the best carbon source for the high production of PS-7 (6.96 g/L) with a high viscosity (40772 cp). In the culture of B. indica with MSM medium containing 20 g/L glucose and 7.5 mM $NH_{4}NO_3$ in a 51 fermentor, the highest cell concentration was 2.5 g/L and the highest concentration of PS-7 was 7.5 g/L (35174 cp). The additional nitrogen sources of 7.5 mM $NH_{4}NO_3$, glutamine and glutamate at 12 h of the culture after exhaustion of a nitrogen source regulated the metabolism of carbon sources, therefore the nitrogen sources could control PS-7 synthesis.

Extraction and Quality Stability of Products Containing Lilium Bulb and Lespedeza cuneata G. Don Extracts (백합과 비수리의 추출 및 추출혼합물이 함유된 음료 제품의 품질 안정성)

  • Kim, Seung Tae;Heo, Chang Hoe;Kim, Sung Hoon;Lee, Won Jong
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • The purpose of this study was to establish optimized extraction conditions for Lilium bulb and Lespedeza cuneata G. Don and to investigate the storage stability of beverages containing extracts. The hot-water extract and the 60% ethanol extract had the highest DPPH radical scavenging activities as well as the highest total polyphenol content. The total polyphenol content, total flavonoid content and DPPH radical scavenging activity were the highest when the Lilium bulb extract was mixed with the Lespedeza cuneata G. Don extract at the ratio of 1:4. Storage stability of beverages was determined during storage at 10, 25, and 35℃ for 6 months. The pH was decreased from 4.15 to 4.01-4.05, while the acidity was increased from 0.60% to 0.70-0.75% after storage for 6 months. The soluble solid contents were not changed during storage of 6 months. The DPPH radical scavenging activity was decreased after 4-6 months. The Hunter b (yellowness) values decreased at 35℃ after storage for 6 months while the lightness (L) and redness (a) were not changed during storage for 6 months. The total saponin content was not remarkably changed during 2 months of storage, while it decreased after 4-6 months of storage. The flavonoid content was decreased 47% and 55% from an intial 21.7 mg/100 mL to 10.3 mg/100 mL and 12.0 mg/100 mL after 1 month of storage and then remained stable until 6 months. General bacteria and coliform group were not detected during storage for 6 months.

Enhanced Production of Gellan by Sphingomonas paucibilis NK-2000 with Shifts in Agitation Speed and Aeration Rate after Glucose Feeding into the Medium (Sphingomonas paucibilis NK-2000 균주가 생산하는 젤란의 생산 농도 향상을 위한 포도당 첨가 및 교반속도와 통기량 변화 방법의 최적화)

  • Lee, Nam-Kyu;Seo, Hyung-Phil;Cho, Young-Bai;Son, Chang-Woo;Gao, Wa;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.811-818
    • /
    • 2010
  • Optimal agitation speed and aeration rate for the production of gellan by Sphingomnas paucibilis NK2000 in a 7 l bioreactor were found to be 400 rpm and 1.0 vvm. The best time for glucose feeding into the medium for enhanced production of gellan by S. paucibilis NK2000 was 36 hr after cultivation. The concentrations of gellan produced by S. paucibilis NK2000 from 1) 20.0 g/l glucose without additional feeding, 2) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr, in which the final concentration in the medium was 10.0 g/l, 3) 20 g/l glucose with feeding of 200.0 g/l glucose and a shift in an agitation speed from 400 to 600 rpm, 4) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 1.5 vvm, 5) and 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 2.0 vvm, were 5.19, 5.74, 6.73, 7.93, and 9.40 g/l, respectively, and their conversion rates from glucose were 26.0, 19.1, 22.4, 26.4, and 31.3%, respectively. Compared to those developed using a normal process, production of gellan by S. paucibilis NK2000 from 20.0 g/l glucose was 1.81 times higher, and and its conversion rate was 1.20 times higher when the optimized process developed in this study was used.