Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.6.811

Enhanced Production of Gellan by Sphingomonas paucibilis NK-2000 with Shifts in Agitation Speed and Aeration Rate after Glucose Feeding into the Medium  

Lee, Nam-Kyu (Marine-Bioindustry Development Center)
Seo, Hyung-Phil (Marine-Bioindustry Development Center)
Cho, Young-Bai (Marine-Bioindustry Development Center)
Son, Chang-Woo (Korea Biosolution Co.)
Gao, Wa (BK21 Bio-Silver Group of Dong-A University)
Lee, Jin-Woo (BK21 Bio-Silver Group of Dong-A University)
Publication Information
Journal of Life Science / v.20, no.6, 2010 , pp. 811-818 More about this Journal
Abstract
Optimal agitation speed and aeration rate for the production of gellan by Sphingomnas paucibilis NK2000 in a 7 l bioreactor were found to be 400 rpm and 1.0 vvm. The best time for glucose feeding into the medium for enhanced production of gellan by S. paucibilis NK2000 was 36 hr after cultivation. The concentrations of gellan produced by S. paucibilis NK2000 from 1) 20.0 g/l glucose without additional feeding, 2) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr, in which the final concentration in the medium was 10.0 g/l, 3) 20 g/l glucose with feeding of 200.0 g/l glucose and a shift in an agitation speed from 400 to 600 rpm, 4) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 1.5 vvm, 5) and 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 2.0 vvm, were 5.19, 5.74, 6.73, 7.93, and 9.40 g/l, respectively, and their conversion rates from glucose were 26.0, 19.1, 22.4, 26.4, and 31.3%, respectively. Compared to those developed using a normal process, production of gellan by S. paucibilis NK2000 from 20.0 g/l glucose was 1.81 times higher, and and its conversion rate was 1.20 times higher when the optimized process developed in this study was used.
Keywords
Sphingomnas paucibilis; gellan; glucose feeding; agitation speed; aeration rate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arockiasamy, S. and R. M. Banik. 2008. Optimization of gellan gum production by Sphingmonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 203-210.
2 Zheng, M. Y., G. C. Du, J. Chen, and W. F. Guo. 2001. A temperature-shift strategy in batch MTG fermentation with S. mobaraense. Process Biochem. 36, 525-530.   DOI
3 Zheng, M. Y., G.. C. Du, and J. Chen. 2002. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme Microb. Technol. 31, 477-481.   DOI
4 Sa-Correia, I., A. M. Fialho, P. Videria, L. M. Moreira, A. R. Marques, and H. Albano. 2002. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29, 170-176.   DOI
5 Schilling, B. M., U. Rau, U. T. Maier, and P. Fankhause. 1999. Modeling and scale-up of the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Eng. 20, 195-201.
6 Kang, K. S., G. T. Veeder, P. J. Mirrasoul, T. K. Kaneko, and L. W. Cottrell. 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Mircobiol. 43, 1086-1091.
7 Wang, X., Y. Yuan, C. Liu, D. Zhang, Z. Yang, C. Yang, and C. Ma. 2006. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl. Environ. Microbiol. 72, 3367-3374.   DOI
8 West, T. P. 2002. Isolation of a mutant strain Pseudomonas sp. ATCC 31461 exhibiting elevated polysaccharide production. J. Ind Microbiol. Biotechnol. 29, 185-188.   DOI
9 Yan, G.., G. Du, Y. Li, J. Chen, and J. Zhong. 2005. Enhancement of microbial transaminase production by Streptoverticillium mobaraens: application of a two-stage agitation speed control strategy. Process Biocehm. 40, 963-968.   DOI   ScienceOn
10 Karim, A. A. and R. Bhat. 2009. Fish gelatin: properties, challenge, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563-576.   DOI
11 Lee, N. K., Y. B. Jo. I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingmonas paucibilis NK-2000. J. Life Sci. 8, 1033-1035.   DOI
12 Morrison, N. A., G. Sworn, R. C. Clark, Y. L. Chen, and T. Talashek. 1999. Gelatin alternatives for the food industry. Prog. Coll. Polym. Sci. 114, 127-131.   DOI
13 Li, Y., J. Hugenholtz, J. Chen, and S. Lun. 2002. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 60, 101-106.   DOI
14 Lim, S. M., J. R. Ru, J. W. Lee, and S. K. Kim. 2003. Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461. J. Life Sci. 13, 705-711.   과학기술학회마을   DOI
15 Martin, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sa-Correia. 1996. Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants. Biotechnol. Appl. Biochem. 4, 47-54.
16 Dreveton, E., F. Monot, D. Ballerini, J. Lecourtier, and L. Choplin. 1994. Effect of mixing and mass transfer conditions on gellan production by Auromonas elodea. J. Ferment. Bioeng. 77, 642-649.   DOI
17 Giavasis, I., L. M. Harvey, and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb. Technol. 38, 101-108.   DOI
18 Harding, N. E., Y. N. Patel, and R. J. Coleman. 2004. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J. Ind. Microbiol. Biotechnol. 31, 70-82.   DOI
19 Jin, H., N. K. Lee, M. K. Shin, S. K. Kim, D. L. Kaplan, and J. W. Lee. 2003. Production of gellan gum by Sphingomanas paucimobilis NK200 with soybean pomace. Biochem. Eng. J. 16, 357-360.   DOI
20 Jansson, R. E., B. Lindberg, and P. L. A. Sandford. 1983. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124, 135-139.   DOI
21 Kanari, B., R. R. Banik, and S. N. Upadhyay. 2002. Effect of environmental factors and carbohydrate on gellan gum production. Appl. Biocehm. Biotechnol. 102-103, 129-140.
22 Bajaj, I. B., P. S. Saudagar, R. S. Singhal, and A. Pandey. 2006. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J. Biosci. Bioeng. 102, 150-156.   DOI
23 Banik, R. M. and A. Santhiago. 2006. Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol. Lett. 28, 1347-1350.   DOI
24 Ding, S. and T. Tan. 2006. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41, 1451-1454.   DOI
25 Banik, R. M., A. Santhiagu, and S. N. Upadhyay. 2006. Optimization of nutrients for gellan gum production by Sphingmonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresource Technol. 98, 792-797.   DOI