DOI QR코드

DOI QR Code

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear

신고 배의 개화기 결정에 미치는 온도영향의 정량화

  • Kim, Soo-Ock (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Kim, Jin-Hee (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Chung, U-Ran (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Kim, Seung-Heui (National Institute of Horticultural & Herbal Science) ;
  • Park, Gun-Hwan (Gyeonggi-do Agricultural Research & Extension Service) ;
  • Yun, Jin-I. (Department of Ecosystem Engineering, Kyung Hee University)
  • 김수옥 (경희대학교 생태시스템공학과) ;
  • 김진희 (경희대학교 생태시스템공학과) ;
  • 정유란 (경희대학교 생태시스템공학과) ;
  • 김승희 (국립원예특작과학원 과수과) ;
  • 박건환 (경기도농업기술원 원예연구과) ;
  • 윤진일 (경희대학교 생태시스템공학과)
  • Published : 2009.06.30

Abstract

Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

최근 우리나라의 춥지 않은 겨울은 온대낙엽과수의 휴면타파에 필요한 저온기간을 충분히 갖지 못하게 함으로서 개화시기를 앞당기거나 불균일하게 함으로써 수확량을 감소시키는 원인이 되고 있다. 기후변화시나리오에 의하면 이러한 피해가 앞으로 더욱 심해질 것으로 전망되므로 과수산업의 대응전략마련을 위해 정확한 개화기 예측이 필수적이다. 기존의 개화기 예측은 이른 봄부터 나타나는 기온의 영향만을 적용한 것으로써 겨울 동안 눈의 휴면상태와 봄철 발아로 인한 개화시기의 변동은 반영할 수가 없었다. 본 연구는 휴면기간 동안 시간과 기온의 조합인 온도시간에 근거하여 내생휴면해제일, 발아, 개화를 예측할 수 있는 휴면시계모형을 배 품종 '신고'에 맞게 조정하고자 수행하였다. 매일의 기온 자료만으로 내생휴면해제일을 찾아내기 위해 수확이 끝난 포장에서 매주 신고 가지를 채취하여 발아실험을 수행하였으며 포장에서 관측된 일 최고 및 최저기온을 이용하여 내생휴면해제일까지 온도시간을 계산하고 적산하였다. 기준온도를 $4^{\circ}C$에서 $10^{\circ}C$ 범위로 설정하고 $0.1^{\circ}C$ 단위까지 세분화하여 휴면시계모형을 반복 구동함으로써 출력된 예상 발아기와 실측 발아기가 일치하는 조건에 해당하는 기준온도와 저온요구도를 도출하였다. 장기 생물계절 관측자료에 근거하여 발아 이후 개화에 이르는 기간의 온도시간을 계산하여 휴면시계모형에 추가함으로써 배 품종 신고의 만개기를 예측할 수 있도록 수정하였다. 이 모형에 의해 최근 9년간 개화기를 추정한 결과 RMSE가 1.9일로서 신고의 만개기 예측에 실용화 할 수 있을 것으로 판단된다.

Keywords

References

  1. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13 https://doi.org/10.1016/j.agrformet.2004.03.002
  2. Faust, M., 1989: Resistance of fruit trees to cold. In Physiology of Temperate Zone Fruit Trees. John Wiley and Sons, 307-331
  3. Han, J. H., S. H. Lee, J. J. Choi, S. B. Jung, and H. I. Jang, 2008: Estimation of dormancy breaking time by development rate model in 'Niitaka' pear (Pyrus pirifolia Nakai). Korean Journal of Agricultural and Forest Meteorology 10, 58-64. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.2.058
  4. Jacobs, J. N., G. Jacobs, and N. C. Cook, 2002: Chilling period influences the progression of bud dormancy more than dose chilling temperature in apple and pear shoots. Journal of Horticultural Science and Biotechnology 77, 333-339 https://doi.org/10.1080/14620316.2002.11511502
  5. Jang, H. I., H. H. Seo, and S. J. Park, 2002: Strategy for fruit cultivation under the changing climate. Korean Journal of Horticultural Science and Technology 20, 270-275. (In Korean with English abstract)
  6. Jung, J. E., E. Y. Kwon, U. Chung, and J. I. Yun, 2005: Predicting cherry flowering date using a plant phenology model. Korean Journal of Agricultural and Forest Meteorology 7, 148-155. (In Korean with English abstract)
  7. Jung, J. E., H. C. Seo, U. Chung, and J. I. Yun, 2006: Spring phenology of a Grapevine cultivar under the changing climate in Korea during 1921-2000. Korean Journal of Agricultural and Forest Meteorology 8, 116-124. (In Korean with English abstract)
  8. Kwon, E. Y., G. C. Song, and J. I. Yun, 2005: Prediction of dormancy release and bud burst in Korean grapevine cultivars using daily temperature data. Korean Journal of Agricultural and Forest Meteorology 7, 185-191. (In Korean with English abstract)
  9. Kwon, E. Y., J. E. Jung, U. Chung, S. J. Lee, G. C. Song, D. G. Choi, and J. I. Yun, 2006: A thermal time driven dormancy index as a complementary criterion for grapevine freeze risk evaluation. Korean Journal of Agricultural and Forest Meteorology 8, 1-9. (In Korean with English abstract)
  10. Lamb, R. C., 1948: Effect of temperatures above and below freezing on the breaking of rest in the latham raspberry. Journal of the American Society for Horticultural Science 51, 313-315
  11. National Institute of Fruit Tree Science, 2003: Research Report of Fruit Production Constitution, Japan, 59-65
  12. Westeood, Melvin N. 1993: Temperate-zone pomology; Physiology and culture (3rd ed.). Timber Press Inc., 428-429
  13. 김정호, 김호열, 조명동, 정순경, 김점국, 손동수, 박동만, 최인명, 이인찬, 2003: 최신 과수 정지 전정. 오성출판사, 485pp
  14. 국립농업과학원, 1990: 주요과수재배지역의 기후특성. 농촌진흥청. 205pp
  15. 오성도, 강성모, 김대일, 김명수, 김월수, 김태춘, 문두길, 박진면, 신용역, 유영산, 임열재, 장한익, 최동근, 2004: 과수온도생리. 도서출판 길모금, 364pp

Cited by

  1. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: III. Identifying Freeze Risk Zones in the Future Using High-Definition Climate Scenarios vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.221
  2. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: II. Freezing Risk Index Based on Dormancy Depth as a Proxy for Physiological Tolerance to Freezing Temperature vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.213
  3. Meteorological Impact on Daily Concentration of Pollens in Korea vol.14, pp.3, 2012, https://doi.org/10.5532/KJAFM.2012.14.3.099
  4. An Operational Site-specific Early Warning of Weather Hazards for Farmers and Extension Workers in a Mountainous Watershed vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.290
  5. Analysis of Accumulated Temperature According to Growth Stage of 5 Herbaceous Landscape Plants vol.17, pp.2, 2014, https://doi.org/10.11628/ksppe.2014.17.2.131
  6. An Agrometeorological Reference Index for Projecting Weather-Related Crop Risk under Climate Change Scenario vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.162
  7. Chilling Requirement for Breaking of Internal Dormancy of Main Apple Cultivars in Korea vol.31, pp.6, 2013, https://doi.org/10.7235/hort.2013.12206
  8. Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do vol.18, pp.1, 2016, https://doi.org/10.5532/KJAFM.2016.18.1.42
  9. Geographical Shift in Blooming Date of Kiwifruits in Jeju Island by Global Warming vol.14, pp.4, 2012, https://doi.org/10.5532/KJAFM.2012.14.4.179