Browse > Article

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter  

Huh, Cheol (Korea Ocean Research & Development Institute/Maritime & Ocean Engineering Research Institute (KORDI/MOERI))
Kang, Seong-Gil (Korea Ocean Research & Development Institute/Maritime & Ocean Engineering Research Institute (KORDI/MOERI))
Cho, Mang-Ik (Korea Ocean Research & Development Institute/Maritime & Ocean Engineering Research Institute (KORDI/MOERI))
Publication Information
Journal of the Korean Society for Marine Environment & Energy / v.13, no.3, 2010 , pp. 187-197 More about this Journal
Abstract
Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.
Keywords
Climate Change; Carbon Dioxide; Impurity; Sulfur Dioxide; Carbon dioxide Capture and Storage; Offshore Geological Storage; Equation of State; Binary Parameter;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhang, Z.X, Wang, G.X, Massarotto, P. and Rudolph, V, 2006, "Optimization of pipeline trasport for $CO_{2}$ sequestration", Energy Conversion and Management, Vol. 47, 702-715.   DOI   ScienceOn
2 Lachet, V, Bruin, T. d., Ungerer, P., Coquelet, C., ValtO', A., Hasanov, V., Lockwood, F. and Richon, D., 2009, "Thermodynamic behavior of the $CO_{2}$ + $SO_{2}$ mixtures: experimental and Monte Carlo simulation studies", Energy Procedia, Vol. 1, 1641-1647.   DOI   ScienceOn
3 Redlich, O. and Kwong, J.N.S., 1949, "On the thermodynamics of solutions", Chem. Rev., Vol. 44, 233-244.   DOI
4 Smi1h, J.M., Van Ness, H.C. and Abbott, M.M., 2005, Introduction to Chemical Engineering Thermodynamics, 7th Ed., McGraw-Hill.
5 Soave, G., 1972, "Equilibrimn constants for modified Redlich-Kwong equation of state", Chem. Eng. Sci., Vol. 27,1196-1203.
6 Visser, E.D., Hendriks, C., Koeijer, G.D., Liljemark, S, Barrio, M., Austegard, A. and Brown, A., 2007, DYNAMIS $CO_{2}$ quality recommendations, Ecofys b.v.
7 Aspen Technology Inc., 2009c, Aspen Plus, Version V7.1, Burlington, MA, USA.
8 Benedict, M., Webb, G.B. and Rubin, L.C., 1940, "An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures", J. Chern. Phys., Vol. 8, 334.   DOI
9 Mathias, P.M., 1983, "A versatile phase equilibrium equation of state", Ind. Eng. Chem. Process Des. Dev., Vol. 22, 385-391.   DOI
10 Boston, J.F. and Mathias, P.M., 1980, "Phase equlibria in a third generation process simulator", Proc. 2nd International Conference on Phase Equlibrium and Fluid Properties in the Chemical Process Industries, West Berlin, 823-849.
11 NIST Reprop ver. 8., 2007, Reference fluid thennodynamic and transport properties.
12 Peng, D.Y and Robinson, D.B., 1976, "A new two-constant equation of state", Ind. Eng. Chem. Food., Vol. 15, 59-64.
13 IEA GHG, 2005, Oxy combustion processes for $CO_{2}$ capture from power plants, Report No. 2005/09.
14 IEA GHG, 2004, Impact of impurities on $CO_{2}$ capture, transport and storage, Report No. PH4/32.
15 강성길, 허철, 2008, "해저 지질구조내 $CO_{2}$ 저장기술의 연구 개발 동향 및 향후 국내 실용화 방안", 한국해양환경공학회지, 제11권1, 24-34.   과학기술학회마을
16 Aspelund, A., Molnvik, M.J. and Koeijer, G.D., 2006, "Ship transport of $CO_{2}$ Technical solutions and analysis of costs, energy utilization, exergy efficiency and $CO_{2}$ emissions", Trans. IChemE, Part A, Chemical Engineering Research and Design, Vol. 84, 847-855.   DOI   ScienceOn
17 Aspen Technology Inc., 2009a, Aspen Physical Property Systems; Physical Property Models, Version V7.1, Burlington, MA, USA.
18 Aspen Technology Inc., 2009b, Aspen Physical Property Systems; Physical Property Methods, Version V7.1, Burlington, MA, USA.
19 허 철, 강성길, 2008a, "이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석", 한국해양환경공학회, 제11권1, 181-190.   과학기술학회마을
20 김화용, 여영구, 임경희, 2005, 화학공학열역학, McGraw-Hill Korea.
21 허 철, 강성길, 2008b, "이산화탄소 해양지중저장 처리를 위한 공정 설계: II 열역학 상태방정식이 압축 및 수송 공정에 미치는 영향 평가", 한국해양환경공학회지, 제11권, 191-198.   과학기술학회마을
22 허 철, 강성길, 2009, "질소불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화", 한국해앙환경공학회지, 제12권, 217-226.   과학기술학회마을