Browse > Article

Optimization of Heteropolysaccharide-7 Production by Beijerinckia Indica  

Wu Jian-Rong (Department of Biotechnology & Bioengineering Pukyong National University)
Son Jeong Hwa (Department of Biotechnology & Bioengineering Pukyong National University)
Kim Ki Myong (Department of Biotechnology & Bioengineering Pukyong National University)
Nam Soo-Wan (Department of Biotechnology, Dong-Eui University)
Lee Jin-Woo (Division of Biotechnology, Dong-A University)
Kim Sung-Koo (Department of Biotechnology & Bioengineering Pukyong National University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.2, 2005 , pp. 117-122 More about this Journal
Abstract
Beijerinckia indica was cultured in mineral salts medium (MSM) medium with various carbon and nitrogen sources to improve the production yield of heteropolysaccharide-7 (PS-7). At high C/N ratio, the high concentration of PS-7 was produced until 40 h of the culture, whereas most of the glucose as a carbon source was used for the cell growth at low C/N ratio. However, at the high C/N ratio, PS-7 accumulation stopped at 48 h of the culture due to the increasing viscosity of the culture broth would inhibit the cell growth. Therefore, the optimized value of C/N ratio was 33.3 (20 g/L glucose, 7.5 mM $NH_{4}NO_3$) for the high production of PS-7. In the culture with various carbon sources, B. indica effectively used the hexoses or glucose-generating sugars for PS-7 formation. Especially, sucrose was the best carbon source for the high production of PS-7 (6.96 g/L) with a high viscosity (40772 cp). In the culture of B. indica with MSM medium containing 20 g/L glucose and 7.5 mM $NH_{4}NO_3$ in a 51 fermentor, the highest cell concentration was 2.5 g/L and the highest concentration of PS-7 was 7.5 g/L (35174 cp). The additional nitrogen sources of 7.5 mM $NH_{4}NO_3$, glutamine and glutamate at 12 h of the culture after exhaustion of a nitrogen source regulated the metabolism of carbon sources, therefore the nitrogen sources could control PS-7 synthesis.
Keywords
Beijerinckia indica; heteropolysaccharide-7; biosynthesis; nitrogen source; carbon source; viscosity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Banik, R. M., B. Kanari, and S. N. Upadhyay. 2000. Exopolysaccharide of the gellan family: prospects and potential. World J. Microbial. Biotechnol. 16: 407-414   DOI   ScienceOn
2 Becker, A, F. Katzen, A. Puhler, and L. Ielpi. 1998. Xanthan gum biosynthesis and application: a biochemical & genetic perspective. Appl. Microbial. Biotechnol. 50: 145-152   DOI   ScienceOn
3 Boza, Y, L. P. Neto, F. A. A. Costa, and A. R. P. Scamparini. 2004. Exopolysaccharide production by encapsulated Beijerinckia cultures. Proc. Biochem. 39: 1201-1209
4 Falk, C., P. E. Jansson, M. Rinaudo, A. Heyraud, G. Widmalm, and P. Hebbar. 1996. Structural studies of the exocellular polysaccharide from Sphingomonas paucimobilis strain 1-886. Carbohydr. Res. 285: 69-79   PUBMED
5 Ramirez-Castillo, M. L. and J. L. Uribelarrea. 2004. Improved process for exopolysaccharide production by Klebsiella pneumoniae sp. pneumoniae by a fed-batch strategy. Biotechnol. Lett. 26: 1301-1306   DOI   ScienceOn
6 Sutherland, I. W. 2001. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J. 1: 663-674
7 Thome, L., M. J. Mikolajczak, R. W. Armentrout, and T. J. Pollock. 2000. Increasing the yield and viscosity of exopolysaccharides secreted by Sphingonomas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J. Ind. Microbiol. Biot. 25: 49-57   DOI   ScienceOn
8 Wang, Y. P., A. Kolb, M. Buck, J. Wen, F. O'Gara, and H. Buc. 1998. CRP interacts with promoter-bound ${\sigma}^{54}$ RNA polymerase and blocks transcriptional activation of the dctA promoter. EMBO 17: 786-796   DOI   PUBMED   ScienceOn
9 Jin, H., H. SKim, S. K. Kim, M. K. Kim, M. K. Shin, J. H. Kim, and J. W. Lee. 2002. Production of heteropolysaccharide7 by Beijerinckia indica from agro-industrial byproducts. Enzyme Microb. Technol. 30: 822-827   DOI   ScienceOn
10 Kim, H. S. 1999. Production of Heteropolysaccharide-7 by Beijerinckia Indica with Agro-lndustrial Byproducts as the Substrate. Ms thesis, Dong-A University, Busan, Korea
11 Klinke, S., M. Dauner, G. Scott, B. Kessler, and B. Withot. 2000. Inactivation of isocitrate lyase leads to increased production of medium-chain-Iength poly(3-hydroxyalkanoates). Appl. Environ. Microbiol. 66: 929-913
12 Portais, J. C. and A. M. Delort. 2002. Carbohydrate cycling in microorganisms: what can $^{13}C-NMR tell us? FEMS Microbiol. Rev. 26: 375-402   PUBMED
13 Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. TIBTECH 16: 41-46   DOI   PUBMED   ScienceOn
14 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
15 Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park. 1996. Higher intracellular levels of uridine monophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol. Bioeng. 62: 317-323
16 Vartak, N. B., C. C. Lin, J. M. Cleary, M. J. Fagan and M. H. Saier Jr. 1995. Glucose metabolism in Sphingmonas elodea: pathway engineering via construction of a gucose-6-P dehydrogenase insertion mutant. Microbiology 141: 2339-2350   DOI   ScienceOn
17 Kang, S. K. and W. H. McNeely. 1976. Polysaccharide and bacterial fermentation process for its preparation. US Patent 3,960,832
18 Oelze, J. 2000. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev. 24: 321-333   DOI   PUBMED   ScienceOn
19 Arcondeguy, T., T. Jack, and M. Merrick. 2001. PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbial. Molecul. Biol. Rev. 65: 85-105
20 Peekhaus, N. and T. Conway. 1998. What is for dinner? : Entner-Doudoroff metabolism in Escherichia coli. J. Bacteriol. 180: 3495-3502   PUBMED
21 Wu, J. R., J. H. Son, H. J. Seo, K. H. Kim, Y. K. Nam, J. W. Lee, and S. K. Kim. 2005. Metabolic flux analysis of Beijerinckia indica for PS-7 production. Biotechnol. Bioproc. Eng. 10: 91-98   DOI   ScienceOn
22 Gulin, S., A. Kussak, P. E. Jansson, and G. Widmalm. 2001. Structural studies of S-7, another exocellular polysaccharide containing 2 deoxy-arabino-hexuronic acid. Carbohydr. Res. 311: 285-290
23 Lee, J. W., W. G Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 1997. Compositional consistency of a heteropolysaccharide-7 produced by Beijerinckia indica. Biotechnol. Lett. 19: 803-807
24 Ashtaputre, A. A. and A. K. Shah. 1995. Studies on a viscous, gel-forming exopolysaccharide from sphingomonas paucimobilis GSl. Appl. Environ. Microbial. 61: 1159-1162
25 Charbit, A. 1996. Coordination of carbon and nitrogen metabolism. Res. Microbiol. 147: 513-518   DOI   ScienceOn
26 Standford, P. A. and J. Baird. 1983. Industrial utilization of polysaccharide, In: polysaccharide II. Academic Press, London
27 Standford, P. A. 1979. Exocellular Microbial polysaccharides, In: Advance in carbohydrate chemistry & biochemistry, Vol. 136. Academic Press, London