• Title/Summary/Keyword: optimization procedure

Search Result 1,165, Processing Time 0.023 seconds

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

A Study on Robust Optimal Design of Laminated Composite Structures with Buckling Constraints (좌굴을 고려한 적층 복합재 구조의 강건 최적설계에 관한 연구)

  • Lee, Byeong-Chae;Lee, Jeong-Jun;Jeong, Do-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1483-1492
    • /
    • 2001
  • A robust optimization procedure is applied to determine the design of the laminated composite plates with buckling constraints. In order to investigate the variation effect to the whole performance of a structure, both design variables and system parameters are assumed as random variables about their nominal values. The robust optimization method has advantages that the mean value and the variation of the performance function are controlled simultaneously and the second order sensitivity information is not required. Considering the information of uncertainty, robust optima for the buckling load of the laminated composite plates with cut-out is obtained. The robustness of the structures is compared to that of the deterministic optimization using scaling factors.

Shape Optimization for Improving Fatigue Life of a Lower Control Arm Using the Experimental Design (실험계획법을 적용한 Lower Control Arm의 피로수명 형상 최적설계)

  • 김민수;이창욱;손성효;임홍재;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.161-166
    • /
    • 2003
  • In order to improve the fatigue lift of a lower control arm in the vehicle suspension, a new shape optimization procedure is presented. In this approach, the shape control point concept is introduced to reduce the numbers of shape design variables. Also, the two-level orthogonal way is employed to evaluate the design sensitivity of fatigue life with respect to those shape design variables, because the analytical design sensitivity information is not directly supplied from the commercial CAE softwares. In this approach, only the six design variables are used to approximate the shape of lower control arm. Then, performed are only 10 fatigue life analyses including the baseline design, 8 DOE models and the final design. The final design, the best combination obtained from the sensitivity information, can maximize the fatigue lift nearly two times as that of the baseline design, while reducing the 12 percentage of weight than it.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

Design optimization of spot welded structures to attain maximum strength

  • Ertas, Ahmet H.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.995-1009
    • /
    • 2015
  • This study presents design optimization of spot welded structures to attain maximum strength by using the Nelder-Mead (Simplex) method. It is the main idea of the algorithm that the simulation run is executed several times to satisfy predefined convergence criteria and every run uses the starting points of the previous configurations. The material and size of the sheet plates are the pre-assigned parameters which do not change in the optimization cycle. Locations of the spot welds, on the other hand, are chosen to be design variables. In order to calculate the objective function, which is the maximum equivalent stress, ANSYS, general purpose finite element analysis software, is used. To obtain global optimum locations of spot welds a methodology is proposed by modifying the Nelder-Mead (Simplex) method. The procedure is applied to a number of representative problems to demonstrate the validity and effectiveness of the proposed method. It is shown that it is possible to obtain the global optimum values without stacking local minimum ones by using proposed methodology.

Inconsistency in Fuzzy Rulebase: Measure and Optimization

  • Shounak Roychowdhury;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.75-80
    • /
    • 2001
  • Rule inconsistency is an important issue that is needed to be addressed while designing efficient and optimal fuzzy rule bases. Automatic generation of fuzzy rules from data sets, using machine learning techniques, can generate a significant number of redundant and inconsistent rules. In this study we have shown that it is possible to provide a systematic approach to understand the fuzzy rule inconsistency problem by using the proposed measure called the Commonality measure. Apart from introducing this measure, this paper describes an algorithm to optimize a fuzzy rule base using it. The optimization procedure performs elimination of redundant and/or inconsistent fuzzy rules from a rule base.

  • PDF

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

Dynamic Compliance Analysis and Optimization of Machine Structures (공작기계구조물의 동강성 해석 및 동적 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.63-66
    • /
    • 2001
  • Recently, as the demand for high efficiency, multi function machine tools is increasing, domestic machine tool industries are investing in research and development for precision machine tools with high speed. This trend is closely correlated with the design technique which is necessary to make new type machine tool compatible with new production system. To achieve high precision, high speed machine tools with reduced chatter, it is needed to develop dynamically rigid structure. In this paper, dynamic optimization of machine structure is presented. At this procedure of dynamic design, dynamic compliance is minimized using Simple Genetic Algorithm(SGA)

  • PDF