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ABSTRACT-Design variables for suspension systems cannot always be realized in the actual suspension systems due to
tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated
with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability
of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable
design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary
between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater
than O for acceptable design, and less than O for unacceptable design. Through reliability analysis, the acceptable range of
design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure
for optimization of the design target with respect to the design variables has been established.
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1. INTRODUCTION

Suspension systems play an important role in providing
good ride and handling performance of vehicles. Kinematic
and compliance (K&C) characteristics of suspensions
determine wheel alignments during vehicle maneuvers,
which set the force and moment transmission capabilities
of a tire at the contact patches. Since various effects of
wheel alignments on vehicle dynamics are well explained
by SDF’s (Static Design Factors), suspension design
targets are usually specified in terms of SDF’s. Some
SDF’s such as camber, toe, caster, and kingpin inclination
are purely kinematic quantities, while other SDF’s are
related to elasto-kinematic behavior of suspensions such
as lateral force compliance toe, fore and aft deflections
due to longitudinal force, etc. In order to deal with K&C
characteristics, both kinematic design variables (such as
suspension hard points), and compliance design variables
(such as stiffness of springs and bushings), should be
considered. Both kinematic and compliance design vari-
ables must be determined in order to achieve the design
target.

Design variables cannot always be realized in actual
suspension systems due to errors in manufacturing and
assembly processes. In order to control these errors, a
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common practice in suspension design is to allocate a
maximum allowable tolerance limit to each design vari-
able. However this does not guarantee that the tolerance
of the design target will be satisfied, since relationship
between design variable tolerances and the design target
are not straightforward. Strict tolerance is better for
performance, but it may increase the manufacturing and/
or assembly costs significantly. Therefore, it is important
to find optimal tolerances for design variables that can
simultaneously satisfy performance and cost.

In order to account for tolerances in suspension
systems, design variables as well as SDF’s can be
regarded as distributed variables. A distinction should be
made between acceptable and unacceptable design
among many distributed values of design variables. For
this purpose the concept of reliability is very effective.
Reliability of a SDF with respect to a design variable can
be defined as the probability that the SDF is in the
acceptable design range for all possible values of the
variable. To determine whether the SDF is within the
acceptable region or not, the limit state, which is the
boundary between the acceptable and unacceptable
design region, is expressed mathematically by a limit
state function with value greater than O for acceptable
design, and less than O for unacceptable design (Nowak
and Collins, 2000). Through reliability analysis, the
acceptable range for design variables that satisfies the
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reliability target can be specified. For reliability based
design, efficient and accurate calculation of reliability is
the key factor.

Monte-Carlo simulation (Dubi, 1999) is the fund-
amental method for obtaining reliability. For each design
variable with known distribution characteristics, random
numbers are numerically generated, and for each gene-
rated number, analysis is carried out to determine
whether the generated number satisfies the design target.
Reliability can be obtained by dividing the number of
random numbers that produced the acceptable results by
the total mumber of generated random numbers. How-
ever, since the accuracy of the Monte-Carlo method
depends on the sample size, it sometimes becomes
impossible to apply if considerably long computation
time is required for a single analysis.

In order to compute reliability more efficiently, various
approximation methods, such as the MVFO (Mean Value
First Order) method, and the FORM (First - Order
Reliability Method) method have been proposed. Cornell
(1969) proposed the MVFO method where nonlinear
limit state functions are linearized using Taylor series
expansion. By applying the central limit theorem to the
linearized limit state function, the reliability index is
obtained. The MVFO method is an efficient method in
terms of computing time, however, it becomes less
accurate as the nonlinearity of the limit state function
increases. Hasofer and Lind (1974), proposed FORM
which is more accurate than the MVFO method. The
reliability index is defined as the shortest distance from
the origin of z-space to the failure surface, and optimi-
zation is performed in order to find this shortest distance.
FORM has some advantages, first of all, accuracy is less
affected by non-linearity of the limit state function, and
second, it can perform reliability analysis effectively with
variables that do not precisely follow the normal distri-
bution. However, FORM takes a longer time to compute
because of the optimization process. In efforts to improve
efficiency and accuracy of reliability analysis, various
methods have been proposed, such as the Rackwitz-
Fiessler method (Rackwitz and Fiessler, 1976, 1978),
Wang and Grandhi’s method (1994, 1996) and Yu’s
method (Yu et al., 1997), a combination of MVFO and
FORM.

K&C behavior of suspensions can be effectively
investigated by a multibody approach where all com-
ponents that constitute a suspension system can be
accounted for. Tolerances of suspension systems are
caused by various factors such as deviations in link
length, joint clearances, direction of joint motion axes,
and stiffness of springs and bushings. Since traditional
methods for multibody systems (Haug, 1989) do not
account for these mechanical tolerances, a new definition
for multibody systems that can handle mechanical

tolerances should be developed. Chun (2005) proposed a
stochastic tolerance model for spatial kinematic systems
that can handle tolerances of link length, joint motion
axis, and joint clearance. His model can be expanded to
carry out elasto-kinematic analysis of spatial suspension
systems with mechanical tolerances. Based on the
tolerance model, a general procedure for reliability
analysis of suspensions can be developed, and using the
reliability analysis, an optimal design process for tolerance
control of suspension systems is proposed.

2. RELIABILITY ANALYSIS FOR ELASTO-
KINEMATICS OF SUSPENSION SYSTEMS

For reliability analysis of elasto-kinematic behavior of
suspension systems where considerable computation time
is required, MVFO is a suitable method because of its
computational efficiency. In applying MVFO, the limit
state function should be linear, and random variables
should follow a normal distribution. Since limit state
functions associated with SDF’s of suspension systems
are quite linear in the tolerance limits (as will be seen
later), and mechanical tolerances in general follow the
normal distribution (Choi et al., 1998; Park et al., 1996)
MVEFO is a good choice for suspension systems.

A variablex; is assumed to have mean value M, and
tolerance T,

xizﬂxi+ Txi (1)

In order to compute reliability, MVFO requires com-
putation of the sensitivity of the limit state function with
respect to the design variables. When a limit state
function g is nonlinear, it can be linearized using a Taylor
series expansion:

g(xlax27 RN} ’xn) = g(ﬂxlsﬂxz, (ER aﬂxn)

+3 (- )38 @

where g(f; ,hes-.. M ) = U, is the mean value of the
limit state function, and a; = (dg/dx;)| “ is the gradient
of g with respect to x; at the mean value of 4, . The
reliability index £ of limit state function g, is obtained by
applying the central limit theorem to Equation (2) as

 l 8o fys st
p=Es=

’Z (aio},.)z

where ofl_ is the variance of x;. For reliability index £, the
probability P of failure can be computed using the normal
cumulative distribution function V.

3
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P(g<0)=Y¥[-/4] “4)

Reliability can be obtained by deducting P from the total
probability of 1.

Reliability=P(g > 0)=1-P(g < 0) )

Since the limit state function g for suspension systems
is a function of the generalized coordinate vector q=[q;,

G . q.), the derivative of g with respect to x,,

dg(q)/dx;, can be calculated using the chain rule.
92(q)_0g(q)dq 6
9x, = 2q ox, ©)

In order to compute dg(q)/dx; in Equation (6), dq/dx;,
which is the sensitivity of generalized coordinates with
respect to x;, should be known.

The elasto-kinematic behavior of a suspension system
can be represented by m-kinematic constraint equations,
which are functions of generalized coordinates q, and k-
design variables x=[x;, x;, ‘-, xJ]° which represent
tolerance of the system,

®[q(x), x]=0 0
®A-Q=0 (8)

where ®[q(x), x]=0 are the constraint equations for
suspension systems, ®, is the Jacobian of ®, A are
Lagrange multipliers, and Q are generalized forces due to
external forces and forces associated with compliance
elements of springs, dampers and bushings. Since Equa-
tions (7) and (8) are non-linear, they can be solved using
the Newton-Raphson iteration method.

For computing the reliability index, the derivative of
generalized coordinates q with respect to x; should be
known as demonstrated in Equation (6). For notational
convenience, variable x; is replaced by a new variable b
without an index. The elasto-kinematic equations of
Equation (7) and (8) are differentiated with respect to x..

4o

= )
dol, ordA_dQ_

a0 " Pegpap =0 (19)

Applying the chain rule, the first term of Equation (9) can
be expressed in terms of partial derivatives

dD_3Pdq 30 db
db~9qdb" b db (n
=D0,q,+D,

where the subscript expresses the partial derivative. The
terms in Equation (10) can be similarly calculated as

d®,, _9(PiA)dg 3(Ph)db
db"~ 9q db ob db

=(PyA) Qs+ (D)),

12)

Z_;;=7\Iqu+}\'b (13)

dQ_
2=0,0:+Q, (14)

Substituting Equations (11)~(14) into Equations (9) and
(10), the sensitivity equations of the elasto-kinematic
equations with respect to design variable b can be written
as

(@A - Q) D || __|(PA),— Qs
R I

To solve the equations, ®,, (®;A), and Q, should be
obtained. Constraint equations @ for various types of
spatial joints such as revolute, spherical, and universal
joints and the corresponding Jacobian ®, are well defined
along with the generalized forces associated with the
compliance elements in reference (Haug, 1989). Once @,
®,, and Q and are computed, derivatives ®,, and ®,can
be obtained by directly differentiating Q, (P4A),, and Q
with respect to b, which represents the tolerance of the
design variables (Tak et al., 2000).

3. TOLERANCE MODELING

Suspension systems can be regarded as interconnections
of bodies by kinematic joints and compliance elements
such as spherical, revolute, cylindrical, and universal
joints, as well as springs and bushings. Design variables
can be classified into two groups, kinematic design
variables and compliance design variables. Kinematic
design variables define kinematic configurations of the
suspension system such as body length, joint location,
and joint motion axis direction, while compliance design
variables specifies the magnitude of spring stiffness of
springs and bushings. If design variables are treated as
random variables with predetermined distribution charac-
teristics in order to deal with tolerances, then design
variables that account for tolerances in suspension system
should be identified.

Since tolerances in compliance design variables do not
affect the kinematic configuration of the suspension
system, each design variable can be regarded as an
independent variable with some tolerance about the
nominal (mean) value in Equation (1). However, if
kinematic tolerances are considered, the kinematic
constraint equation should be expressed both in terms of
generalized coordinates q and kinematic design variables
x as ®[q(x), x]=0, since tolerances of kinematic design
variables change the kinematic configuration of the
suspension system.

A MacPherson suspension system, as shown in Figure
1, is considered as an example of many types of suspen-
sion systems. Since other types of suspensions such as
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Figure 1. MacPherson suspension.

Table 1. Design variables of a MacPherson suspension.

Design Variable X y z
A 1014 351 -5
B 9754 | 693.3 -26
G 1322 351 3
C 1000 | 551 | 605
De_sign D 990.2 | 5756 | 3525
points
(o) T 1136 296 158
H 1102 641 150.5
E 980 720 100
SO 998.2 567 558
St 9927 | 605 | 418
Translational
) (N/mm) 3000 | 3000 300
Torsional
~N deg) 30000 | 30000 | 3000
Translational
(N/mm) 2000 | 2000 200
Bush |A Torsional
orsion
N deg) 20000 | 20000 | 2000
Translational 1000 | 1000 100
G (N/mm)
Torsional
(Nmm/deg) 10000 | 10000 | 1000
. 21.67
Spring(N/mm) (free length: 310 mm)

double wishbone suspensions have common kinematic
joints and compliance elements, tolerance analysis can be
done in a manner similar to that of a MacPherson
suspension. The suspension has a knuckle, a lower arm,
and a strut, and they are interconnected by spherical and

Figure 2. Tolerance model for body geometry.

cylindrical joints as well as by bushings and springs. A
list of design variables and their nominal values is given
in Table 1. The values of design variables in Table 1 are
not always realized in the actual suspension products due
to the errors in manufacturing and assembly process.
Let u’s consider the tolerance of the body dimensions
first. The body of the suspension system is generalized as
body i as shown in Figure 2. The coordinate system
x;’ =y’ —z represents the body reference frame with
respect to inertial frame X-Y-Z. Vector r; is the position
vector at the origin of the x;" - y," —z;” frame, and points
P and Q are the joint definition points through which
body i is connected to other bodies by kinematic joints.
Vectors s; and s?, respectively, define the position
vectors of points P and Q, and vector d is the position
vector from point P to Q, which can be expressed as

d=s%-s'=A;s/%-A;s/”” (16)

where A, is the transformation matrix from the
x;’ -y’ -z’ frame to the inertial frame, and s,” and
s:’¢ are the local vector representations of s; and s’ in
the x," -y’ —z, frame, respectively.

Both s° and s/° are time-constant vectors that
define the joint definition points, which in fact determine
the kinematic configuration of a body. Thus, variations in
s;/F and s/¢ can account for the tolerances of the
geometry of a body. In some cases, the relative position
between P and Q determines the geometry of a body, and
in other cases, only the distance between P and Q is
meaningful, depending on the type of joints at these
points. For example, if spherical joints are at both P and
Q, then only the distance between them is kinematically
significant; however, when a revolute joint is at P and a
translational joint is at Q, then the relative position
between P and Q affects the kinematic behavior of the
system.

To deal with the relative position tolerance between P
and Q, either s;/” or s/ is considered to be fixed, and
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Table 2. Tolerance model for links, joints and force
elements of a MacPherson suspension.

Figures
element Constraint Equation/ Random
generalized Force variables
Tie rod
Lower
arm
Spherical
joint
© —r,+As -1, —As/ ~AD/=0] ¢, ¢, cf,
——V' ;1@ Inner rod
Cylindrical Outer pipe
joint
Y - N
¥ ‘ Ag
T .
f d; —\dij‘sm(@)
T .
o, = g d; _\dijlsm(%) =0 |c!, Ci”y
T .
£ h; +sin(¢;) )
T . g
g h, +sin(g,)
d=r+As| -1, - As - AD{f

the other can be regarded as a random variable. Here let
u’s assume that s> is fixed and s;¢ is the random
variable. Since the tolerance between P and Q can be in
any direction, each element of s,/%=[s,"%, 5,"°, 572"

can be an independent random variable with mean and
tolerances given as

s7=p(s/*)+T(s/°) (17)
Distance [ between P and Q is given as
P=d'd=(As? - As’") (As/? - As’") (18)

If it is assumed that s,-’P is fixed and s,? is designated as
arandom variable to account for the link length variation,
then the link length tolerance & can be obtained by taking
the variation of Equation (18) as

- A=(As/2—As/") (A:857°— As”") (19)

In the above equation, variation 0s/% is the same as the
tolerance T(s;”®) in Equation (17). Thus if the tolerance
of 8,2 is defined, then the tolerance in the link length
can be calculated by Equation (19).

Tolerance models for suspension components such as
links, kinematic joints, and bushings, are summarized in
Table 2. The tie rod and lower control arm have
tolerances associated with link length. In the case of a tie
rod that has two spherical joints at each end, L, which is
the length from the joint location point P to point Q can
be defined as a design variable. In the case of the lower
arm, vector F can be defined as a vector from a joint
location point A to the other joint location point B, and
vector G can be defined as a vector from a joint location

Table 2. Continued.

Figures
element | Constraint Equation/ Random
generalized Force variables
Bush

F
Qi F{Airi +§|’ATF1:| kxx’kyyakﬂ

kt ,kt .kt
i T AT ~1 AT
J Aj l—’j-i-SjAj Fj

XXy 2
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Figure 3. Tolerance model of a spherical joint.

point A to the other joint location point C. Each element
of vectors F and G, (F,, F,, F,, G,, G,and G,) represent
random variable.

A spherical joint as shown in Figure 3 is composed of
the housing and ball, and a possible clearance between
them. The joint clearance can be caused by a difference
between the diameter of the housing and the ball, and
also by a non-perfect circular shape of the housing and
ball. Spherical joint random variables are components of
the clearance vector between the ball and housing ¢,”
such as ¢,”, ¢;,” and ¢,”. The tolerance model and
corresponding random design variables for other types of
kinematic joints and bushing elements in MacPherson
suspension systems are summarized in Table 2.

4. RELIABILITY ANALYSIS

In order to carry out reliability analysis for the elasto-
kinematics of a MacPherson suspension system, a limit
state function should be defined. Figure 4 shows toe
angle using the design variables of Table 1, when the
wheel moves vertically from full rebound (-80 mm) to
full bump (90 mm). Also, the upper and lower limit of
acceptable toe angles is specified as +0.2° of the nominal
toe angle. In this case, the limit state functions of the toe
angle can be defined as

8roe_wp=Tr08 1py—TOE
8roE_1ow=TOE-Trop 15

(20)
21)

where gror ., and gror 1, Tepresent upper and lower
limit state function respectively, and TOE is toe angle,
* Trog_up 18 the upper limit state and Trog 4, is lower limit
state. If the toe angle is greater than the upper limit state
or less than the lower limit state, toe angle is out of the
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Table 3. Design variables and tolerances for a Mac-
Pherson suspension.

Design variables Nominal | Toler
omin; oler-
Joints, bushes . . dimensions| ances
& links Directions
1 Tie rod Length(mm) | 346.75 0.5
i‘ x(mm) ~-38.6 0.5
Low arm
i (Vector F) y(mm) 342.3 0.5
4 z(mm) -21.0 0.5
5| Spherical(®) | p 4ioi(mm) 0 0.1
clearance
¢| SphericalH) | oo vimm) | 0 0.1
clearance
7| Spherical(T) | g 4ial(mm) 0 0.1
clearance
i Cylindrical(D) | Radial(mm) 0 0.5
9| clearance Conical(®) 0 0.5
10 Radial(N/mm) | 3000 300
11 Axial(N/mm) 300 30
"~ ] Bush (O Conical
12 Stiffness (N deg) 30000 3000
] Torsional
13 (Nmm/deg) 3000 300
14 Radial(N/mm) | 2000 200
15 Axial(N/mm) 200 20
| Bush (&) Conical
16|  Stiffness (Nmm/deg) 20000 2000
] Torsional
17 (Nmm/deg) 2000 200
18 Radial(N/mm)|{ 1000 100
19 Axial(N/mm) 100 10
| Bush (G) Conical
20 Stiffness N deg) 10000 1000
| Torsional
21 N deg) 1000 100

limit state and the value becomes less than O.

If limit states of the camber angle are defined as +0.1°
as shown in Figure 5, the limit state functions of the
camber angle are defined as

8camper_up=1 camper_ippy—CAMBER
8camper_iow=CAMBER—T comper_tow

22)
(23)

Also, if the limit states of the caster angle are specified as
+0.1° as shown in Figure 6, the limit state functions of the
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Figure 6. Limit state of caster.

caster angle can be given as
8 CASTER up™ TCASTER,up—CASTER (24)
gCASTER_lowzCASTER—TCASTERJUW (25)

Design variables for link length, joint clearance and
stiffness of bushing and their tolerances are presented in
Table 3. In order to perform reliability analysis of the
suspension system, the probability density function of
random variables should be known. It is known that the
tolerance of mechanical systems can be represented by
the normal distribution in general (Choi et al., 1998). If
random variables of a suspension system do not follow
the normal distribution, other distribution functions can
be used with an appropriate reliability analysis method.

If the mean value of a random variable is # and the
variance is ¢°, the probability that the variable is within
1+ 30 becomes 99.7%. In this case, an interrelation
between tolerance T and variance ¢ can be represented
as

6’=T"/9 (26)

When random variables from the MacPherson suspen-
sion system have mean values and tolerances as in Table
3, the variances of random variables are obtained using
Equation (26). By substituting the variances of random
variables and the sensitivity of the limit state function
(with respect to random variables) into Equation (3), the
reliability index can be computed. For example, the
reliability index for the upper limit state function of the
toe angle can be calculated as

ﬂgTOE_up=gTOE_up(ﬂxl 9ﬂx25 [XX] aﬂxn)

,BTOE,up=G =
IZ (ac.)

where a,.=Lagm_up/axij(wxz ..... W)
Substituting free, Of Equation (27) into Equation (5),
the reliability that the toe angle is in the upper limit states
is obtained as

@7

Reliabilty e ,y=P(gr0r 1 > 0)
=1-P{(groe.p < 0) (28)
= 1_\P(ﬂIOE_up)

Figure 7 shows the reliability that the toe angle is in the
limit states as Equation (28), which is the result of
reliability analysis when wheel moves up and down.

1=P{(gror ,» < 0 and grop_iow < 0)
=P (TTOE,up > TOE > TTOEJ(;W) (29)

The lowest reliability is about 0.963 when wheel center
position is located at —80 mm. Figure 8 shows the
reliability when the camber angle is in the limit states as
in Equation (30), and the lowest reliability is about 0.989
when the wheel center position is located at 90 mm.

_ MWWM}
o i G5
= 4
R
= &7 o e
5
-80 ~E0 -40 =20 a 20 40 [51] 80

wheel travel{mm}

Figure 7. Reliability of toe.



720 H. H. CHUN, S. J. KWON and T. TAK

Reliability
p
b
B

20 40 B0 a0
Wheel travel{mm)

Figure 8. Reliability of camber.

B
|t b
5957 i
E 997 \\
=
® §-996
@&
-00 -60 -40 ~20 ] 20 a0 80 a0

Wheel travel{mm)

Figure 9. Reliability of caster.

1-P, f(g CAM_up < 0 and geartow < 0)
=P(Tcass o > CAMBER > Tup 1) (30)

Figure 9 shows the reliability that the caster angle is in
the limit state as in Equation (31), and the lowest
reliability is about 0.996 when the wheel center position
is located at 90 mm.

1-PHgeas o < 0 and geus o < 0)
=P (TCAs,up > CASTER > Teus 100) (31)

5. OPTIMIZATION

The optimization problem can be defined as in Equation
(32) in order to perform reliability-based design optimi-
zation.

Minimize 1(X)
T
Subject 10 X; 1pwer £ Xi S Xiwpper =12, ..., 21 (32)
Cost(x) < 690

Design variable x; corresponds to each tolerance in Table
3. In order that the lowest reliability over the whole range
of wheel travel becomes 0.997 for toe angle, camber
angle, and caster angle, performance index I(x) is defined
as the norm of unit vectors which are composed of
differences between the lowest reliability and 0.997 for
each SDF. where the target value 0.997 means the
probability that each SDF is within fpe + 3 0gpe. Since it

818
= g
L S
2 206 +
= pp=el
r=) f ot
% — L’J"w a.06
2 -
O . —e—initial
Bro6 | —#— optimized |
5:558
7:540
80 -0 -4 -0 o 20 40 60 80

Yheel travel{mm}

Figure 10. Reliability of toe after optimization.

oo
+-688
+ non
- +:666
- -
B
T
£ _——
£r306
£ fr94
é 8352 R
?’ f-G08. I P
« L —— initial 3
6300 | @~ optinized
pE
£-506
Py
504
P
838
-80 -60 -40 ~20 o} 20 40 50 80

yheel travel{mm)

Figure 11. Reliability of camber after optimization.

is assumed that the cost of production is inversely
proportional to the tolerance, the cost Cost(* ) is defined
as the summation of the reciprocal of the tolerance. The
upper boundary of design variable x; . and lower
boundary x; ;,.., are set up and Cost(x) is restricted to 690
or less, where 690 is defined as a constraint value in order
that 10% or more of the initial cost is decreased.

I(X)=((Min[Pz(Ttae_up > toe > T,MJDW)]_(),977)2

0.977
Min[PAT an ., > camber > TC,Z,,,_I,,W)]—O.977)2
+( 0.977 (33)
(Min[Pz(TcuLup > casber > TC"S_IOW)]_O.977) 2) 172
0.977
21 1
Cost(x)_g1 " (34)

Figure 10 through Figure 13 show reliabilities that toe,
camber, and caster angles are located in the limit state
before and after optimization. It can be shown that each
reliability of toe, camber, and caster angles is larger than
0.997. Figure 13 shows the history of the performance
index I(x), which demonstrates the performance index
reduction as iteration proceeds. The cost of production
and the lowest reliability within the entire range of wheel
travel for toe, camber and caster angle before and after
optimization are arranged in Table 4. The cost of
production becomes 685.75, which is an 11.5% decrease
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858 Table 5. Initial and optimal tolerances of a MacPherson
— = i — suspension.
N e e = Design variables Tolerances

P il SR P o S

g o Joints, bushes L . i

= - — & links Directions | Initial | Optimal

. J—o—-— initial | A
"""" |-—=— optimized| 1 Tie rod
i 2 x(mm) 05 | 0653
-8 ~&0 -40 ~20U'353 i 20 40 2] a0 3 Lower arm
Wheel travel(mm) —  (Vector F) P
4 z(mm) 0.5 0.768
Fi 12. Reliabilit aft imization. -
igure eliability of caster after optimization 5 | Spherical (B) | Radial(mm) | 0.1 0.158
1.4 6 | Spherical (H) | Radial(mm) 0.1 0.131

12 f't 7 1 Universal (T) | Radial(mm) 0.1 0.142

[ | 8 Radialmm) | 0.5 | 0.464

B s —— Cylindrical(D) -

2 J 9 Conical(®) 05 | 0.146

E 08

£ L \ 10 Radial(N/mm) | 300 | 3263

g l\‘/\/\,\ 11 Axial(\/mm) | 30 | 33.08

o C Conical
i 1 2t 3 4 51 12 Bush (©) (Nmm/deg) 3000 | 31024
lteration — T - 1
orsional
Figure 13. History of performance index for a 13 (Nmm/deg) 300 | 3184
MacPh ion.

ACHRETSON SUSpEnsion 14 Radial(N/mm) | 200 | 200.7
Table 4. Cost and reliability of initial and optimal designs 15 AxialN/mm) | 20 | 2647
for a MacPherson suspension. 16 Bush (A) Ncorrrlli/cdal 2000 | 2045.1

. Initial | Optimal {Reduction (Nmum/deg)
Performance function . . -
design | design (%) Torsional
17 Nmm/d 200 | 2123
Cost 77534 | 68578 | 115 (Nmm/deg)
Minimum reliability for | oo | g997 | _ 18 Radial(N/mm) | 100 | 1028
toe ’ ) 19 Axial(N/mm) | 10 27.6
Minimum reliability for _ Bush (G Conical
camber 0.989 | 0.997 20 © | Nromydeg) | 1000 | 11062
Minimum reliability for Torsional
caster 0.995 0.997 - 21 (Nmm/deg) 100 102.8

compared to the initial cost. Tolerances before and after
optimization are arranged in Table 5. The shaded
tolerances, which are sensitive to toe, camber and caster
angle, are decreased and the other less sensitive
tolerances are increased to minimize cost and improve
reliability at the same time.

6. CONCLUSION
In this study, the tolerances that exist in the links, joints,

and bushings of suspension systems are modeled.
Additionally, the reliability-based design optimization for

elasto-kinematic behavior of suspensions is presented
based on the tolerance model. MVFO is selected out of
various available methods as the reliability method for
suspension systemns because of numerical efficiency. The
sensitivity needed in the reliability analysis is evaluated
by kimemato-static analysis and sensitivity analysis using
the constraint equations and generalized forces. In order
to minimize the cost of production and improve the
reliability of the suspension system at the same time,
reliability-based design optimization is presented. The
optimization is applied to a MacPherson suspension
system in order to validate the usefulness of the proposed
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method. The reliabilities of toe, camber, and caster angle
are increased and the cost is simultaneously decreased.
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