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Abstract

Rule inconsistency is an important issue thal is needed to be addressed while designing efficient and optimal fuzzy rule bases. Automatic
pencration of fuzzy rules from dala sets, using machine learning techniques, can generate a significant number of redundant and
inconsistent rules. In this study we have shown that it is possible to provide a systematic approach to understand the fuzzy rule
inconsistency problem by using the proposed measure called the Commonality measure. Apart from introducing this measure, this paper
describes an algorithm to optimize a fuzzy rule base using it. The optimization procedure performs elimination of redundant and/or

inconsistent fuzzy rules from a rule base. ,
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1 . Introduction

Validation of rule bases is an important research area
in knowledge base systems as it ensures the correctness
and robustness by detection of anomalies. Anomalies in a
rule base or a knowledge base can be detrimental to rule
based system's performance. Anomalies like conflicting
rules, redundant rules, inconsistency of rules, coherency
factors, and a few more often exist in rule bases. Among
them, inconsistency of rules is one of the major reasons
for rule base system failure. Definitely, it can be argued
that such situations may be valid for systems based on
the classical logic. Can fuzzy logic-based systems handle
such uncertain situations? To some extent it can, but that
does not root out the basic nature of inconsistent (absurd)
rules that may exist in a fuzzy rule base.

Inconsistent rules are generated in fuzzy rule bases
mainly because of two reasons. Either from time to time
different pieces of knowledge from different experts are
added upon the existing knowledge base, or by using
machine generated fuzzy rules through clustering and data
mining algorithms for different types of data sets.

Designers of fuzzy systems have often evaded the
problem and have worked around by tuning membership
functions of their fuzzy sets. Zadeh defined consistency
of fuzzy sets by using the maximum possibility of two
intersecting fuzzy sets [15]. Pedrycz extended that idea
by using conditional possibility and thresholding
mechanisms t0 remove inconsistent rules [9]. Partially or
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totally inconsistent fuzzy rules have been discussed by
Nguyen et. al. [8]. Yager and Larsen [13] have proposed
reflecting input method that would discover potentially
hidden anomalies by using the principles of the classical
logic.

In this paper, we are interested in eliminating
undesirable rules, undesirable in a sense of being
redundant or inconsistent. Section 2 briefly highlights
some of the existing approaches that have been
undertaken to understand and solve this problem.
However, we like to understand this problem by focusing
on commonalities that exist among rules. We propose a
measure called the Commonality measures for fizzy sets
and fuzzy rules in Section 3. In Section 4, we use these
measures in the construction of an algorithm to remove
redundant and/or inconsistent rules.

I1. Earlier Work

Zadeh has defined the inconsistency in terms of
heights of intersecting fuzzy sets [15]. Yager and Larsen
[13] have introduced the reflecting on the input method,
and this method has been discussed again by Dubois et.
al [4].

Pedrycz's original approach [9] was to use conditional
possibility measures for both antecedents and consequents
to determine measure of inconsistency of fuzzy rules.
Scarpelli et. al. [10] have enhanced Pedrycz's work [9].
Usually most of the work done so far has a common
framework. They all would match on something on both
sides of fuzzy rules. For instance, they establish some
sort of similarity between respective antecedents and
consequents. In other words, it means:
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F(Ay, A~ F (B, By, (1)

for two fuzzy rules A, — B, and A, — B, Usually F
and F' are some similarity based match. Height is one of
such match functions that have been often used in most
of the previous works [4, 9].

Dubois, Prade, and Ughetto [4] have addressed the
problem of coherence and redundancy of parallel fuzzy
rules. They have justified their reasoning for various
different kinds like gradual rules [3], possibility rules,
certainty rules, etc. In [4] they also proposed practical
coherence tests for fuzzy rules, but it seems that the
construction of core is bit nebulous.

Bien and Yu [1] have proposed a method to extract
core information from a fuzzy control rule base having
some inconsistent rules. They have shown through
simulation studies that inconsistent control rules can be
effectively utilized by using their method. Their method
is founded on an inference-oriented methodology that is
based on statistical concepts.

Recently, Wang and Cho [11] developed an input
space partitioning method for structure identification of
fuzzy modeling, They have proposed a method that is
based on genetic algorithms. The method is reported to
generate a set of less inconsistent rules while satisfying
the given accuracy requirement.

lll. Commonality Measure

This section proposes a new measure to comprehend
the fundamental nature of rule inconsistency in fuzzy rule
bases. It is called as the Commonality Measure. When
two fuzzy sets intersect, it is possible to use their shared
information as source of common knowledge. Thus, the
commonality measure extracts the common information
shared by two fuzzy sets.

3.1 Preliminary Ideas

Before we define these measures for the evaluation of
the consistency of fuzzy rules in a rulebase, we revisit
few existing ideas that we need to explain these
measures. One of them is the geometric distance in fuzzy
sets, and the other is the notion of specific information
content of a fuzzy set.

3.1.1 Geometric Representation of Fuzzy Sets

A fuzzy set can be represented as a point in a
hyperspace of ils membership functions (see Kosko [6])
and is often called as the geometric representation of
fuzzy sets. The support set of a fuzzy set is implicitly
assumed to be the universe of discourse. Kosko
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represented his fuzzy set as a fit vector [6]. The
geometric properties in the membership-based hypercube
follow the same principles of the Cartesian geometry.
Similar to the distance defined in the Cartesian geometry,
a distance between two fuzzy sets A and B is defined as
an /’-norm:

HAB)= A (ax) - sl @

where pe(l,00), and n is the cardinality of the
universe of discourse. When p = 1, we get classical
Hamming distance, and at p—o we have
max ; (a(x,) —pp(x)). Apart from the geometric
representation, our measures use a well-known concept of
specificity of fuzzy sets. Here we only provide the basic
definition and the reader is encouraged to refer to [5, 6].

3.12 Specificity
Yager [14] defined specificity of a fuzzy set as:

Y
S = | AT de (3)

where A, is the g-cut and o, is the largest
membership grade in A. Among some of the important
properties for Sp(A4), we note that it is bounded between
[0,1]. A singleton set has specificity of 1, and for an
empty set it is zero. Specificity increases for subsets with
the same normal, but decreases for subnormal sets, There
are other properties that can be found in [2, 12, 14].
Among other notable works using specificity, Kacprzyk
used this measure to study fuzzy If-Then rules [7].

3.2 Commonality Measures

The above concepts are used here to define a new
measure to evaluate the information contents based on
common knowledge that exists among two pieces of
information. We call this measure as the Commonality
Measure. The commonality measure gauges the amount
of common information that may exist between two fuzzy
sets. It uses the concept of specific knowledge that is
shared between two distinet pieces of information
sources.

Definition: The commonality measure, (A, B), between
two fuzzy sets 4 and B is defined by:
e

@)

d(A, B)

#HA.B)=1—¢

where C = T(A, B), and T is a t-norm.

The commonality measure is founded on the concept
of evaluating common information while considering the
relative knowledge from a spatial viewpoint. It estimates
the relative comparison of pertinently common

@



components of two fuzzy sets existing in the same
universe of discourse. The distance measure enforces
spatial evaluation in terms of distinctness between two
fuzzy values within the same universe of discourse. The
spatial information is required because it allows
characterizing the information content in a relative sense.

The properties of this measure are easy to compute.
For example, when two fuzzy sets are the same ie., A =
B, then we can have ¢(A4, B)=1. It implies that both
the fuzzy sets have maximum commonality. We also
observe that when support sets are same but normals are
different, the distance between the two fuzzy sets is
nolonger zero. Thus, for only identical fuzzy sets we
have the maximum commonality and that equals to one.
The commonality measure is zero for two totally disjoint

fuzzy sets.

Example 1: Consider two fuzzy sets A and B with the
following fit vectors: A = (0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8,
0.5,03,0.1,0,0,0,0,0,0), and B=(0,0,0,0,0, 0,
0,0,0,04, 05,08, 1, 1, 1, 0.5, 0) having the same
universe of discourse X = (10, 11, 12, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27). Consequently, we
have C = T(A,B)=(0,0,0,0,0,0,0, 0, 0, 0.3, 0.1, 0,
0,0, 0,0,0), and D = T¥AB) = (0, 0, 0, 0, 0.2, 0.4,
0.6, 0.8, 0.5, 04, 0.5, 0.8, 1, 1, 1, 0.3, 0).

From the above fuzzy sets we compute Sp(C)=0.25,
and Sp(D)=0,17. We also compute specificities of the
original fuzzy sets Sp(A)=0.35 and Sp(B)=0.22 to
evaluate the contrast measure. The /A-norm based
distance between the fuzzy sets is 2.35. Therefore, the
commonality measure we get from these values is
#(A, B)=0.10.

Once we evaluate the commonality measure between
two fuzzy sets, ii then becomes quite simple to generate
commonality measures for the rules and rule bases. The
respective commonality measures can be treated as
indicators of the amount of common knowledge that is
embedded in the rules and rule bases.

Let us consider a rule base RB, comprising of p
conjunctive fuzzy rules with n antecedents and m
consequents:

Ri: (%115 Al el %y is AL Y=(y is BY.(ym s Bh)

.....

Ri (i A7 el 2y is AL )31 8 Beeo( v, is BL)

Re (xis Af )l is AS)—(y; 85 BDrk v is BE)

Rp: (xl is 1411ﬁ ) (xn Ai )—( Vi is B{J)a:( Ym is B)Dn )

~~~~~

Uk

We can compute the commonality measure & for

antecedent variable x, with fuzzy sets A! and A% of the

rules R; and Ry, respectively. Similar computation is
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performed for other antecedents and consequents for a
fuzzy rule.

Consider R, and Ry
commonality measure for the ;

The
antecedent of those two

from the above rule set.
th

rules is given by:

SPUT(AL AN

AALAD

I
pa=1l—e

(8

The commonality measure for all antecedents for these
two rules is given by:

k=204 ®)

Similarly, the total commonality measure for all the
consequents of the rules Rl and Rk is measured by:

= 204, )

where ¢% is the commonality measure for consequent
fuzzy sets B! and B* for Rl and Rk

Definition: Commonality of the two rules, R; and R is
Wefined by ¢* as a normalized summation of the
commonality measures of the antecedents variables and the
consequent variables of the rules.

w__ beé = ‘ZSJ[EI;
= ®)

Certainly, it is well observed that since ¢4 and 4%

in (6) and (7) are less than or equal to 1, we have
¢%< 1. For any two identical rules, say, Rl and Rk, the
commonality measure is ¢%=1. Existence of identical
rules leads to redundancy of rules in a rule base,
Therefore, in this paper we will refer to identical rules as
redundant rules. Tt is important to deplete the rule base
of redundant rules. By contrast, we have ¢*=0( for
totally different rules. Otherwise, for any inconsistent rule
we usually have ¢*<=(0,1). Tt is to be noticed that more
the rules become inconsistent, the more redundant they
are.

A rule base is a collective entity. Thus, it is important
to evaluate a rule in the presence of other rules in the
rule base. The commonality measure ¢’ of single rule RI
is computed as:

¢* )

RET Rkl

¢[

Once we compute commonality for an individual rule
we also compute the total commonality measure of the
entire rule base and is given by:

$rp= 21 I +1¢Hi

Using commonality is one of the viewpoints to study

(10)
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rule inconsistency and rule base optimization. It is also
possible to use another viewpoint of evaluating the
contrasting features of two pieces of knowledge to
understand inconsistency that fizzy sets and fuzzy rules
induce.

IV. Optimizing Fuzzy Rule Bases

We will use the commonality measure to propose an
optimization algorithm for the fuzzy rule base that has
inconsistent rules. The optimization procedure described
here is obtained by deleting some of the gradual rules
that add to inconsistency and/or redundancy in the rule
bases. Dubois and Prade have focused on incoherent and
redundant rules as separate issue [4).

Consider Fig. 1, in which there are two rules with two
antecedents and a consequent. We observe from the
figure that the antecedent variables X, and X, of two

fuzzy rules have the same antecedent fuzzy sets, but
different congequent sets. This is an extreme example of
inconsistent fuzzy rule. It is possible that such rules
might be generated while using either opinions of
different experts, or from various automatic rule
generation algorithms,

In general, there are a few ad hoc mechanisms and
procedures that are used by researchers to remove such
anomalies in fuzzy rule bases [9, 10]. However, ad hoc
methods based on thresholding mechanisms are of serious
disadvantages. Firstly, how do we decide and determine
the threshold values? For the calculation of threshold
values either we use empirical methods or rely on expert
opinions. In order to avoid such disputant techniques, we
propose an algorithmic approach to solve the problem of
rule inconsistency and redundant rules in this study.

Y=B
X2Z=AZ|

Rule 1

X1=Al

v

A

vz

ur

Rule 2

v

30 v

!

Fig. 1. An example of inconsistent furzy rules.

The commonality measure for rules in a rule base
helps to detect and remove the inconsistent rules and the
redundant rules, and create an optimized fuzzy rule base
by deleting undesired fuzzy rules.

Before presenting the algorithm we will walk through
a typical scenario. Let us assume fuzzy representation of
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a nonlinear function shown in Fig. 2. The rule base RB,

comprises of five rules having one antecedent and one
consequent as shown below:

Ry (X is A) — (Yis B )
Ry : (X8 Ay) — (YVis By)
Ry 1 (X, is A) — (YVis By )
Ry (X, is A) —(Yis B )
Ry :(X,is As) = (Y is Bg )

In Fig. 2, for the sake of simplicity we represent a
fuzzy rule by a point in the rule space UXV, where U
and V are the universe of discourses for the antecedent
and consequent variables, respectively. Let us compute
¢', the commonality measure of R, with respect to the
other four rules. We have ¢! = %+ g8+ g+ g% where
the individual commonality measures are computed as
¢17=0.6, ¢"=0.8, ¢"=0.7, and #®=0.1, and thus we get
¢'=2.2. Similar computations are done for the other rules
and then we obtain ¢*=1.9, ¢#=2.5, ¢'=24, and &°
=0.83. Validating our intuition, we find fiom our
computation that r is closer to R,, R,, and R, where
R;
commonality measures of R, R,, and R,. In fact, it

compared with R,. Therefore, holds maximum

appears to have more common information and should be
treated as redundant information sources.

Fig 2. A nonlincar function modeled by 5 fuzzy rules.

The next question that arises, is it possible to delete it
from the rule base without affecting the overall rule base
performance? Before we make a decision to rule out R,,
we assign it as a most likely candidate for removal. But
we make the final decision only after evaluating the
effects of the rmue base by temporarily blocking
individual rules one at a time. The commonality measure
of the rule base without using 7, is

¢ go-g, = 22 IJ§;+1¢UE=5.5

Similarly, the commonality measures of the mle base
by removing the other rules are given by:

(11)



brnm= B, 3,905 (12)
b r5, -5, = lj__“,*a oo 2 ey ® =485 (13)
¢ rB,- R, = ,_\%*4 o g'#4¢”3=8.15 (14)
b R R = ,j;*ﬁ . ;#Sw’eao (15)

Thus, we observe that by removing the most likely
candidate R, the commonality of the rule base decreases
most. And that's what we want to know which rule
induces the maximum redundant information to the rule
base. From our example we notice that R, contributes
redundant information to the rule base, and is an
undesired rule. We should remove it from our rule base
RB,. Therefore, our new rule base RB, consists of four
rules, R, R, R, and R as shown in Fig. 4.

B5

B3

Rl

B4

Al Al A2 A4 A5

Fig. 4. Rules generated from RBoptimizer.

Similar to our previous steps we iterate over the
computation of commonality measure of each of the
rules. The commonality measure of R, with respect to
the three kB,
¢'= ¢+ ¢!+ 4. The individual commonality measures
are given by ¢“=0.6, ¢*=0.7, and ¢*=0.1 and thus
we have ¢'=1.4. Similar computations are done for the
other rules. For those rules, we find #°=1.4, 4*=1.5,
¢°=0.55. We find that R, is the most likely candidate
for removal. Then we follow the similar process of
evaluating the rule base by depriving each of the rules
temporarily to verify the chosen candidate. The

other rules in is computed by
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commonality measure of the rule base RB, withouwt R,
is:

¢RB;—R1=2-1 (16)

A similar computation to (12)-(15) provides the other
commonality measures required:

¢RBZ—R3=2'05 (17)
¢ rB,—-r, = 2.8 (18)
& ke, k= 3.75 (19)

However, in this step we observe that ¢ .5 . has the
minimum commonality measure, not ¢ s _,. We stop

removing the rules when the likely candidate can no
longer be removed. Thus, in our working example we
finally have a rule base with four rules R,, R,, R,, and

Rs.

The algorithm for removal of inconsistent and
redundant fuzzy rules is shown below:
Procedure RBoptimizer (RuleBase RB)
begin
loop = TRUE;
while (loop — TRUE)
begin
1. Compute commonality measures for each
individual rule: ¢'=31¢" Vic(l,..., ).
2. Find the rule that has the maximum
commonality measure, led ¢ = Max( 4",
Vie{l,...,p}. We set R, as the most likely

candidate for removal from the rule base.
3. Remove each rule from RB and compute

b rp—r= 228", V{1, .., ).
4. Find the minimum of ¢ zp_p,
5. if (/=+7) then
loop := FALSE;
else
Remove the rule R, from the current

rule base and update to a new rule base.
end
end

V. Conclusions and Future Work

Inconsistencies among rule sets are not desirable in
any system that significantly relies on rule bases. This
brief paper is a result of our preliminary study of fuzzy
rule inconsistencies and anomalies that exist in fuzzy rule
bases. Rule inconsistency issue in fuzzy rule bases needs
further investigation to resolve this practical problem.

Here we have addressed the fuzzy rule inconsistency
issue, and have shown how to optimize a rule base by
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removing inconsistent and redundant rules based on the
newly proposed measures called Commonality measure.
Commonality measure based approach can be treated as
an alternative method of fuzzy rule base optimization,
We are in a process of comparing our methodology of
rule base optimization with other existing methods.

Among the other issues like performance measures of
optimized rule bases, experimental verification, and
further enhancement of this technique remains to be
done. Usually performance of a rule base is assessed in
terms of accuracy and the number of rules. We need to
study how the proposed optimized rule bases perform
with respect to the original rule bases.

Among other future works we would like to discuss
the issue of optimality. However, optimality is quite a
challenge, since we usually have more than one criterion
such as accuracy, number of rules, etc to evaluate it
Objective fimetions are being evaluated and tested to
understand this problem in a better way.
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