• Title/Summary/Keyword: optimization of enzyme production

Search Result 136, Processing Time 0.034 seconds

Isolation of High Yielding Alkaline Protease Mutants of Vibrio metschnikovii Strain RH530 and Detergency Properties of Enzyme

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;Jin, Ghee-Hong;Rho, Hyune-Mo;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.349-354
    • /
    • 2000
  • Abstract A facultative alkalophilic gram-negative Vibrio metschnikovii strain RH530, isolated from the wastewater, produced several alkaline proteases (VAP) including six alkaline serine proteases and a metalloprotease. From this strain, high yielding YAP mutants were isolated by NTG treatment. The isolated mutant KS1 showed nine times more activity than the wild-type after optimization of the culture media. The production was regulated by catabolite repression when glucose was added to the medium. The effects of several organic nitrogen sources on the production of the YAP were investigated to avoid catabolite repression. The combination of 4% wheat gluten meal (WGM), 1.5% cotton seed flour (eSF), and 5% soybean meal (SBM) resulted in the best production when supplemented with 1% NaCl. The YAP showed a resistance to surfactants such as $sodium-{\alpha}-olefin$ sulfonate (AOS), polyoxy ethylene oxide (POE), and sodium dodecyl sulfate (SDS), yet not to linear alkylbenzene sulfonate (LAS). However, the activity of the YAP was restored completely when incubated with LAS in the presence of POE or $Na_2SO_4$. The YAP was stable in a liquid laundry detergent containing 6.6% SLES (sodium lauryl ether sulfate), 6.6% LAS, 19.8% POE, and stabilizing agents for more than two weeks at $40^{\circ}C$, but the stability was sharply decreased even after 1 day when incubated at $60^{\circ}C$. A washing performance test with the YAP exhibited it to be a good washing power by showing 51 % and 60% activity at $25^{\circ}C{\;}and{\;}40^{\circ}C$, respectively, thereby indicating that the YAP also has a good detergency at a low temperature. All the results suggest that the YAP produced from the mutant strain KSI has suitable properties for use in laundry detergents.rgents.

  • PDF

Studies on the Microbial Utilization of Agricultural Wastes (Part 13) Optimization of Simultaneous Hydrolysis-Fermentation for Ethanol Production from Rice Straw (농생폐자원의 미생물학적 이용에 관한 연구 (제13보) Ethanol 생산을 위한 동시당화-발효조건의 검사)

  • Lee, Jung-Yoon;Kim, Byung-Hong;Bae, Moo;Kim, Sung-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.71-75
    • /
    • 1981
  • Studies were made to optimize the simultaneous hydrolysis-fermentation (SSF) process for the production of ethanol from rice straw. Trichoderma sp. KI 7-2 was selected to produced cellulase by solid culture for SSF. Ethanol production was highest when the SSF process utilized koji culture of the fungus grown on a medium of wheat bran-rice straw 3 : 2 mixture with moisture content of 50% adjusted to pH 4.5 for 7 days as the enzyme source. It was found that pretreatment of the substrate is not necessary. To ferment 1g of rice straw by SSF 2.47 units of cellulase were required, and the initial yeast concentration of 2.5$\times$10$^{7}$ cell/$m\ell$ was found to be sufficient. Optimum pH and temperature for the process were 4.5 and 4$0^{\circ}C$, respectively. It was also found that higher ethanol concentration in the broth can be obtained by the addition of substrate or substrate and enzyme to SSF broth.

  • PDF

Optimization of \beta-mammanase Production from Bacillus subtilis JS-1. (\beta-Mannanase를 생산하는 Bacillus subtilis JS-1의 분리 및 효소 생산성)

  • 임지수;정진우;이종수;강대경;강하근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • A bacteria strain producing extracellular $\beta$-mannanase was isolated from soil and was identified as Bacillus subtilis by 16S rRNA sequence comparison and biochemical determinations. The optimum pH and temperature for the $\beta$-mannanase activity were 5.0 and 5.5$^{\circ}C$, respectively. The zymogram technique revealed a single protein band exhibiting $\beta$-mannanase activity from the culture supernatant. The molecular mass of the enzyme was estimated at approximately 130 kDa. The addition of 0.5% lactose or 0.5% locust bean gum to the LB medium caused to Increase significantly the $\beta$-mannanase productivity from Bacillus subtilis JS-1. The cells grown on LB medium supplemented with lactose produced maximal enzyme activity at the stationary phase. In contrast to this, the $\beta$-mannanase was induced at the logarithmic phase from the cells grown on LB medium supplemented with locust bean gum. The discrepancy in induction times suggests that $\beta$-mannanase was induced by different induction mechanisms depending on the carbon sources in Bacillus subtilis JS-1 .

Optimization of Conditions for Isolating and Cultivating Bacillus sp. Se-103 with a Mesophilic Feather-Degrading Activity (중온성 우모 분해균 Bacillus sp. SE-103의 분리 및 배양 조건 최적화)

  • Chang, Hyung-Soo;Choi, Il
    • Korean Journal of Poultry Science
    • /
    • v.36 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • This study was carried out to investigate the possibility to utilize feather meal by bacterial strains. A bacterial strain SE-103 producing keratinolytic enzyme was isolated from the soil of the poultry slaughterhouses. It was identified as Bacillus sp. by judging from its morphological and physiological characteristics. Subsequently the optimal culture conditions for the production of keratinolytic protease by Bacillus sp. SE-103 were investigated. The composition of optimal medium was 3.0% glucose, 0.4% urea, 0.2% $NaNO_3$, and 0.15% KCl. In addition, optimal initial pH and temperature were 6.0 and $35^{\circ}C$, respectively.

Biotransformation of Ginsenoside Rd from Red Ginseng Saponin using Commercial β-glucanase (상업용 β-glucanase를 이용한 홍삼유래 사포닌으로부터 Ginsnoside Rd 의 생물 전환)

  • Kang, Hye Jung;Lee, Jong Woo;Park, Tae Woo;Park, Hye Yoon;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2020
  • Bio-conversion manufacturing technology has been developed to produce ginsenoside Rd which is increasingly in demand as a cosmetic material due to various possibilities related to improving skin function. In order to convert ginsenoside Rb1 which is contained in red ginseng saponin (RGS) into Rd, several commercial enzymes were tested. Viscoflow MG was found to be the most efficient. In order to optimize the conversion of RGS to ginsenoside Rd by enzymatic transition was carried out using response surface methodology (RSM) based on Box-Behnken design (BBD). The main independent variables were RGS concentration, enzyme concentration, and reaction time. Conversion of ginsenoside Rd was performed under 17 conditions selected according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rd ranged from 0.3113 g/L to 0.5277 g/L, and the highest production volume was obtained under condition of reacting 2% RGS and 1.25% enzyme for 13.5 hours. Consequently, RGS concentration, enzyme concentration which is 0.05 less than p-value and among the interactions between the independent variables, the interaction between enzyme concentration and reaction time was confirmed to be the most influential.

Optimization of Conditions for the Production and Properties of Alginate-degrading Crude Enzyme from Shewanella oneidensis PKA 1008 (Shewanella oneidensis PKA 1008의 알긴산 분해 조효소 생산 최적 조건과 조효소의 특성)

  • Sunwoo, Chan;Kim, Koth-Bong-Woo-Ri;Kim, Dong-Hyun;Jung, Seul-A;Kim, Hyun-Jee;Jeong, Da-Hyun;Jung, Hee-Ye;Kang, Bo-Kyeong;Bark, Si-Woo;Lim, Sung-Mee;Hong, Yong-Ki;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.372-378
    • /
    • 2013
  • An alginate-degrading bacterium, identified as Shewanella oneidensis PKA 1008 by 16S ribosomal RNA sequence analysis, was isolated from the green alga Ulva pertusa. Optimal conditions for the alginate-degrading ability of its crude enzyme were then determined. The optimal culture conditions for the growth of S. oneidensis PKA 1008 were pH 9, 2% NaCl, $30^{\circ}C$, and 24 hours incubation time. The crude enzyme produced by S. oneidensis PKA 1008 showed the highest alginate-degrading activity at pH 9, $30^{\circ}C$ and produced 1.001 g of reducing sugar per liter in 3.5% (w/v) sodium alginate for 1 hour.

Optimization of Compound K Production from Ginseng Extract by Enzymatic Bioconversion of Trichoderma reesei (Trichoderma reesei 유래 산업효소를 이용한 인삼추출물로부터 Compound K 생산 최적화)

  • Han, Gang;Lee, Nam-Keun;Lee, Yu-Ri;Jeong, Eun-Jeong;Jeong, Yong-Seob
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.570-578
    • /
    • 2012
  • Compound K(ginsenoside M1) is one of saponin metabolites and has many benefits for human health. This study was to investigate Compound K produced from ginseng crude saponin extract with commercial cellulolytic complex enzyme(cellulase, ${\beta}$-glucanase, and hemicellulase) obtained from Trichoderma reesei. The effect factors(temperature, pH, ginseng crude saponin extract and enzyme concentration, and reaction time) on production of Compound K from ginseng crude saponin extract were determined by one factor at a time method. The selected major factor variables were ginseng crude saponin extract of 2%(w/v), enzyme of 7%(v/v), reaction time of 48 hr. Based on the effect factors, response surface method was proceeded to optimize the enzymatic bioconversion conditions for the desirable Compound K production under the fixed condition of pH 5.0 and $50^{\circ}C$. The optimal reaction condition from RSM was ginseng crude saponin extract of 2.38%, enzyme of 6.06%, and reaction time of 64.04 hr. The expected concentration of Compound K produced from that reaction was 840.77 mg/100 g. Production of Compound K was 1,017.93 mg/100 g and 862.31 mg/100 g, by flask and bench-scale bioreactor($2.5{\ell}$) system, respectively.

Process Optimization of Peptides Production from Protein of Sea Cucumber and Its Antioxidant Capacity Analysis (해삼 단백질로부터 펩타이드 제조 최적공정 확립 및 항산화 특성)

  • Ha, Yoo Jin;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.338-348
    • /
    • 2017
  • Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was performed to optimize the hydrolysis of protein of sea of cucumber by a flavourzyme. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 0.5 to 1.5%(w/v). As a result, the optimization of process was determined at temperature of $48-50^{\circ}C$, pH of 7.0-7.2, and enzyme concentration of 1.0-1.1%(w/v), and degree of hydrolysis was 43-45 at above conditions. The molecular weight of hydrolysate was distributed to 500-3,500 Da and showed typical peptides. Inhibition concentration ($IC_{50}$) of peptides of DPPH radical scavenging activity, Superoxide anion radical scavenging activity, Hydroxy radical scavenging activity, $Fe^{2+}$ cheating activity was 1.25, 3.40, 10.3, and 22.11 mg/mL, respectively. Therefore, we expect that those products are useful as functional food ingredients.

Combinatorial Fine-Tuning of Phospholipase D Expression by Bacillus subtilis WB600 for the Production of Phosphatidylserine

  • Huang, Tingting;Lv, Xueqin;Li, Jianghua;Shin, Hyun-dong;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2046-2056
    • /
    • 2018
  • Phospholipase D has great commercial value due to its transphosphatidylation products that can be used in the food and medicine industries. In order to construct a strain for use in the production of PLD, we employed a series of combinatorial strategies to increase PLD expression in Bacillus subtilis WB600. These strategies included screening of signal peptides, selection of different plasmids, and optimization of the sequences of the ribosome-binding site (RBS) and the spacer region. We found that using the signal peptide amyE results in the highest extracellular PLD activity (11.3 U/ml) and in a PLD expression level 5.27-fold higher than when the endogenous signal peptide is used. Furthermore, the strain harboring the recombinant expression plasmid pMA0911-PLD-amyE-his produced PLD with activity enhanced by 69.03% (19.1 U/ml). We then used the online tool \RBS Calculator v2.0 to optimize the sequences of the RBS and the spacer. Using the optimized sequences resulted in an increase in the enzyme activity by about 26.7% (24.2 U/ml). In addition, we found through a transfer experiment that the retention rate of the recombinant plasmid after 5 generations was still 100%. The final product, phosphatidylserine (PS), was successfully detected, with transphosphatidylation selectivity at 74.6%. This is similar to the values for the original producer.

Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces (초식동물 배설물로부터 분리한 Bacillus sp. H9-1의 섬유소 분해효소생산 최적화)

  • Yoon, Young Mi;An, Gi Hong;Kim, Jung Kon;Cha, Young-Lok;Park, Yu Ri;Ahn, Jong-Woong;Moon, Youn-Ho;Ahn, Seung-Hyun;Koo, Bon-Cheol;Park, Kwang-Geun
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • This study was performed to find cellulolytic strain of enzymatic saccharification for bioethanol production. Cellulolytic strains were isolated from 59 different feces of herbivores from Seoul Grand Park located in Gwacheon Gyeonggi-Do. The celluloytic strain was selected by congo red staining and DNS method. Among the isolated strains, H9-1 strain isolated from the feces of rabbit has the highest CMCase activity. H9-1 strain was identified as Bacillus sp. based on 16S rDNA gene sequencing. The optimal conditions for CMCase activity by Bacillus sp. H9-1 were at $40^{\circ}C$ and at initial pH 8.