DOI QR코드

DOI QR Code

해삼 단백질로부터 펩타이드 제조 최적공정 확립 및 항산화 특성

Process Optimization of Peptides Production from Protein of Sea Cucumber and Its Antioxidant Capacity Analysis

  • 하유진 (중부대학교 식품생명과학과) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Ha, Yoo Jin (Department of Food and Biotechnology, Joongbu University) ;
  • Yoo, Sun Kyun (Department of Food and Biotechnology, Joongbu University)
  • 투고 : 2017.05.30
  • 심사 : 2017.06.29
  • 발행 : 2017.06.30

초록

식물 및 동물성 단백질 유래 펩타이드 형태의 단백질 가수분해물들은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 건조 해삼으로부터 해삼육 슬러리를 제조하고 flavourzyme 프로티아제를 이용하여 단백질 가수분해 최적공정을 수행하였다. 이어서 생산된 펩타이드의 항산화 특성을 연구하였다. 효소반응 최적공정은 표면반응 분석법을 이용하여 수행을 하였고 공정의 범위는 반응온도 $40-60^{\circ}C$, 반응 pH 6-8, 효소의 농도 0.5-1.5%(w/v) 이었다. 해삼의 단백질 최적 효소가수분해 공정조건은 효소 반응온도 $48-50^{\circ}C$, 반응 pH 7.0-7.2, 효소의 양은 1.0-1.1%(w/v)에서 결정 되었다. 이때 단백질 가수분해 수율은 43-45%에 도달하였다. 생산된 대부분 가수분해물의 분자량들은 전형적인 펩타이드인 분자량 500-3,500Da로 분포되었다. 펩타이드들은 항산화 능력은 금속 킬레이션 능력($IC_{50}$, 1.25 mg/mL), DPPH 소거능($IC_{50}$, 3.40 mg/mL), 슈퍼옥사이드 라디칼 소거능($IC_{50}$, 10.3 mg/mL), 하이드록시 라디칼 소거능($IC_{50}$, 22.11 mg/mL) 순서로 저해농도가 낮음을 보여 주었다. 따라서 해삼 단백질 가수분해물은 건강 기능 식품소재로서 활용할 가치가 높을 것으로 기대를 한다.

Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was performed to optimize the hydrolysis of protein of sea of cucumber by a flavourzyme. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 0.5 to 1.5%(w/v). As a result, the optimization of process was determined at temperature of $48-50^{\circ}C$, pH of 7.0-7.2, and enzyme concentration of 1.0-1.1%(w/v), and degree of hydrolysis was 43-45 at above conditions. The molecular weight of hydrolysate was distributed to 500-3,500 Da and showed typical peptides. Inhibition concentration ($IC_{50}$) of peptides of DPPH radical scavenging activity, Superoxide anion radical scavenging activity, Hydroxy radical scavenging activity, $Fe^{2+}$ cheating activity was 1.25, 3.40, 10.3, and 22.11 mg/mL, respectively. Therefore, we expect that those products are useful as functional food ingredients.

키워드

참고문헌

  1. Y. Zhao, B. Li, Z. Liu, S. Dong, X. Zhao, M. Zeng, "Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysis", Process Biochem, Vol.42, pp. 1586-1591, (2007). https://doi.org/10.1016/j.procbio.2007.08.011
  2. I. Wijesekara, S. K. Kim, "Angiotensin- I-converting enzyme(ACE) inhibitors from marine resources: Prospects in the pharmaceuticalindustry", Mar. Drug, Vol.8, pp. 1080-1093, (2010). https://doi.org/10.3390/md8041080
  3. Y. Zhong, M. A. Khan, F. Shahidi. "Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa)", J. Agric. Food Chem, Vol.55, pp. 1188-1192. (2007). https://doi.org/10.1021/jf063085h
  4. T.I. Kim, M.H. Son, J.K. Cho, Y.G. JIN, "Observation of External Injury and Morphological Movement for Analysis of Recovery Possibility after Storage of the Juvenile Sea Cucumber", Apostichopus japonicus JF M S E, Vol. 28, No. 4 pp. 1006-1013, (2016).
  5. D. L. Aminin, B. V. Pinegin, L. V. Pichugina, T. S. Zaporozhets, I. G. Agafonova, V. M. Boguslavski, "Immunomodulatory properties of Cumaside", Int Immunopharmacol, Vol.6, pp. 1070-1082, (2006). https://doi.org/10.1016/j.intimp.2006.01.017
  6. J. Mamelona, E. Pelletier, K. Girard- Lalancette, J. Legault, S. Karbouned. S. Kermasha, "Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa", Food Chem., Vol.104, pp. 1040-1047, (2007). https://doi.org/10.1016/j.foodchem.2007.01.016
  7. A. Husni, I. S. Shin, S. G. You, D. Chung, "Antioxidant properties of water and aqueous ethanol extracts and their crude saponin fractions from a far-eastern sea cucumber, Stichopus japonicus", Food Sci Biotechnol,. Vol.18, pp. 419-424, (2009).
  8. M. S. Maier, A. J. Roccatagliata, A. Kuriss, H. Chludil, A. M. Seldes, C. A. Pujol, E. B. Damonte, "Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei," J Nat Prod., Vol.64, pp. 732-736, (2001). https://doi.org/10.1021/np000584i
  9. M. Kaneko, F. Kisa, K. Yamada, T. Miyamoto, R. Higuchi. "Structure of a new neuritogenic-active ganglioside from the sea cucumber Stichopus japonicus". Eur J Org Chem. pp. 1004-1008, (2003).
  10. B. Cigic, M. Zelenik-Blatnik, "Preparation and characterization of chicken egg white hydrolysate", Acta Chimica Slovenica,. Vol.51, pp. 177-188, (2004).
  11. E. Salminen, J. Rintala, "Anaerobic digestion of organic solid poultry slaughterhouse waste a review", Bioresour. Technol, Vol.83, pp. 13-26, (2002). https://doi.org/10.1016/S0960-8524(01)00199-7
  12. E. Haque, R. Chand, S. Kapila, "Biofunctional properties of vioactive peptides of nilk origin", Food Reviews International, Vol.25, pp. 28-43, (2009).
  13. R. Florisa, I. Recio, B. Berkhout, S. Visser, "Antibacterial and antiviral effects of milk proteins and derivatives there of Current, Pharmaceutical Design, Vol.9, pp. 1257-1275, (2003). https://doi.org/10.2174/1381612033454810
  14. M. Yoshikawa, H. Fujita, N. Matoba, Y. Takenaka, T. Yamamoto, R Yamauchi. H. Tsuruki, K. Takahata, "Bioactive peptides derived from food proteins preventing lifestyle-related diseases", BioFactors, Vol.12, No.1-4 pp. 143-146, (2000). https://doi.org/10.1002/biof.5520120122
  15. P. Harnedy, R. J. FitzGerald, "Bioactive peptides from marine processing waste and shellfish: A review", Journal of Functional Foods, Vol.4, No.1 pp. 6-24, (2012). https://doi.org/10.1016/j.jff.2011.09.001
  16. J. R. Chen, T. Okada, K. Muramoto, K. Suetsuna, S. C. Yang, "Identification of angiotensin I-converting enzyme inhibitory peptides derived from the peptic digest of soybean protein", Journal of Food Biochemistry, Vol.26, pp. 543-554, (2002). https://doi.org/10.1111/j.1745-4514.2002.tb00772.x
  17. M. Chalamaiah, B. Dinesh kumar, R. Hemalatha, T. Jyothirmayi, "Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review", Food Chemistry. Vol.135, pp. 3020-3038. (2012). https://doi.org/10.1016/j.foodchem.2012.06.100
  18. N. Sun, P. Cui, Z. Jin, H. Wu, Y. Wang, S. Lin, "Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates", Food Chemistry. Vol.230, pp. 627-636, (2017). https://doi.org/10.1016/j.foodchem.2017.03.077
  19. S. S. Pitchumoni, P. M. Doraiswamy, "Current status of antioxidant therapy for Alzheimer's disease", J Am Geriatr Soc., Vol.46, pp. 1566-1572. (1998). https://doi.org/10.1111/j.1532-5415.1998.tb01544.x
  20. M. S. Blois, "Antioxidant determinations by the use of a stable free radica", Nature, Vol.18, pp. 1000, (2004).
  21. X. B. Fan, C. J. Li, D. N. sha, "The establishment of o-phenanthroline chemiluminescent system for measuring OH radica", Basic Medical Sciences and Clinics. Vol.18, No.6 pp. 468-471, (1998).
  22. W. Yu, Y. Zhao, Z. Xue, H. Jin, D. Wang, "The antioxidant properties of lycopene concentrate extracted from tomato paste", Journal of the American oil Chemists Society. Vol.78, No.7, pp. 697-701, (2001). https://doi.org/10.1007/s11746-001-0328-6
  23. K. Hsu, G. Lu, C. Jao, "Antioxidative properties of peptides prepared fromtuna cooking juice hydrolysates with Orientase (Bacillus subtilis)", Food Research International. Vol.42, pp. 647-665, (2009). https://doi.org/10.1016/j.foodres.2009.02.014
  24. J. Adler-Nissen, "Enzymatid hydrolysis of proteins for increased solubility", J Afric Food Chem., Vol.24, pp. 1090-1093, (1976). https://doi.org/10.1021/jf60208a021
  25. D. A. Vattem, R. R. Mahoney, "Production of dialyzable iron by in vitro digestion of chicken muscleprotein fractions: the size of the dialyzable iron", J Sci Food Agric, Vol.85, pp. 1537-1542, (2005). https://doi.org/10.1002/jsfa.2043
  26. D. M. Yeum, Y. S. Kim, "Antioxidative action of enzymatic hydrolysates of mackerel muscle protein", Korean J. Food & Nutrition, Vol.7, No.2 pp. 128-136, (1994).
  27. A. H. Ding, C. F. Nathan, D. J. Stuhr, "Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages", J Immono, Vol.141, pp. 240-241. (1988).