DOI QR코드

DOI QR Code

Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces

초식동물 배설물로부터 분리한 Bacillus sp. H9-1의 섬유소 분해효소생산 최적화

  • Yoon, Young Mi (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • An, Gi Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Kim, Jung Kon (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Park, Yu Ri (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Ahn, Jong-Woong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Ahn, Seung-Hyun (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Park, Kwang-Geun (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
  • 윤영미 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 김중곤 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 박유리 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안종웅 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안승현 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 구본철 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 박광근 (농촌진흥청 국립식량과학원 바이오에너지작물센터)
  • Received : 2012.11.28
  • Accepted : 2013.01.15
  • Published : 2013.02.27

Abstract

This study was performed to find cellulolytic strain of enzymatic saccharification for bioethanol production. Cellulolytic strains were isolated from 59 different feces of herbivores from Seoul Grand Park located in Gwacheon Gyeonggi-Do. The celluloytic strain was selected by congo red staining and DNS method. Among the isolated strains, H9-1 strain isolated from the feces of rabbit has the highest CMCase activity. H9-1 strain was identified as Bacillus sp. based on 16S rDNA gene sequencing. The optimal conditions for CMCase activity by Bacillus sp. H9-1 were at $40^{\circ}C$ and at initial pH 8.

Keywords

References

  1. Limayem, A. and S. C. Ricke (2012) Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science. 38:449-467. https://doi.org/10.1016/j.pecs.2012.03.002
  2. Kil, S. C., S. W. Kim, and M. S. Oh (2012) Global trends of bioethanol science information. Econ. Environ. Geol 45: 589-597. https://doi.org/10.9719/EEG.2012.45.5.589
  3. Kim, K. S. and J. S. Kim (2010) Optimization of ammonia percolation process for ethanol production from Miscanthus Sinensis. Korean Chem. Eng. Res. 48: 704-711.
  4. Cardona, C. A., J. A. Quintero, and I. C. Paz (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology. 101: 4754-4766. https://doi.org/10.1016/j.biortech.2009.10.097
  5. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh (2010) Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30:330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  6. An, G. H., S. I. Lee, B. C. Koo, Y. H. Choi, Y. L. Cha, S. T. Bark, J. K. Kim, B. C. Kim, and S. P. Kim (2011) Effects of application of solidified sewage sludge on the growth of bioenergy crops reclaimed land. Korean J. Crop Sci. 56: 299-307. https://doi.org/10.7740/kjcs.2011.56.4.299
  7. Kim, D. W., C. H. Chung, and T. S. Kim (1992) Sugar production mechanism by the enzymatic hydrolysis of cellulosic materials: Kinetic study of the enzymatic hydrolysis of cellulose by cellulase components. Polymer. 16: 436-442
  8. Bhat, M. K. (2000) Cellulases and related enzymes in biotechnology. Biotechnology Advances. 18: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  9. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson (2000) Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology. 83: 177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
  10. Kim, H. J., Y. H. Kim, M. J. Cho, K. Shin, D. H. Lee, T. J. Kim. and Y. S. Kim (2010) Characterization of cellulases from Schizophyllum commune for hydrolysis of cellulosic biomass. Mokchae Konghak. 38: 547-560. https://doi.org/10.5658/WOOD.2010.38.6.547
  11. Deswal, D., Y. P. Khasa, and R. C. Kuhad (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology 102: 6065-6072. https://doi.org/10.1016/j.biortech.2011.03.032
  12. Reczey, K., Zs. Szengyel, R. Eklund, and G. Zacchi (1996) Cellulase production by T. reesei. Bioresource Technology. 57: 25-30. https://doi.org/10.1016/0960-8524(96)00038-7
  13. Esterbauer, H., W. Steiner, I. Labudova, A. Hermann, and M. Hayn (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology. 36: 51-65. https://doi.org/10.1016/0960-8524(91)90099-6
  14. Shu, G., M. Hu, S. Wang, and H. Chen (2011) Effect of some factors on production of cellulase by Trichoderma reesei HY07. Procedia Environmental Sciences. 8: 357-361. https://doi.org/10.1016/j.proenv.2011.10.056
  15. Lee, S. H., J. P. Chae, M. J. Kim, and D. K. Kang (2010) Isolation of Bacellus amyloliquenfaciens ATC6 producing acidic cellulase. Journal of Animal Science and Technology. 52: 65-70. https://doi.org/10.5187/JAST.2010.52.1.065
  16. Bark, S. T., B. C. Koo, Y. H. Choi, Y. H. Moon, S. H. Ahn, Y. L. Cha, J. K. Kim, G. H. An, S. J. Suh, and D. H. Park (2010) The effect of extrusion treatment on aqueous ammonia soaking method in Miscanthus Biomass pretreatment. New and Renewable Energy. 6(4): 6-14.
  17. Han, M. H., Y. Kim, Y. G. Kim, B. W. Chung, and G. W. Choi (2011) Bioethanol production from optimized pretreatment of cassava stem. Korean J. Chem. Eng. 28: 119-125. https://doi.org/10.1007/s11814-010-0330-4
  18. Yoo, H. Y., S. B. Kim, H. S. Choi, K. Kim, C. H. Park, and S. W. Kim (2012) Optimization of sodium hydroxide pretreatment of canola agricultural residues for fermentable sugar production using statistical method. IPCBEE. 28:175-179.
  19. Ghose, T. K. (1987) Measurement of cellulase activities. Pure Appl Chem. 59:257-268. https://doi.org/10.1351/pac198759020257
  20. Feng, Y., C. J. Duan, H. Pang, X. C. Mo, C. F. Wu, Y. Yu, Y. L. Hu, J. Wei, J. L. Tang, and J. X. Feng (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol. 75:319-328. https://doi.org/10.1007/s00253-006-0820-9
  21. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 35:426-428.
  22. Seki, T., C. K. Chung, H. Mikami, and Y. Oshima (1978) Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28:182-189. https://doi.org/10.1099/00207713-28-2-182
  23. Shabeb, M. S. A., M. A. M. Younis, F. F. Hezayen, and M. A. Nour-Eldein (2010) Production of cellulase in low-cost medium by Bacillus subitilis KO strain, World Applied Sciences Journal, 8:35-42.

Cited by

  1. Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성 vol.42, pp.1, 2013, https://doi.org/10.4014/kjmb.1311.11004