• Title/Summary/Keyword: optimization conditions

Search Result 3,141, Processing Time 0.04 seconds

Flavor Improvement of a Complex Extract from Poor-quality, Individually Quick-frozen Oysters Crassostrea gigas (IQF 굴(Crassostrea gigas) 복합엑스분의 추출 및 풍미개선)

  • Hwang, Seok-Min;Hwang, Young-Suk;Nam, Hyeon-Gyu;Lee, Jae-Dong;Ryu, Seong-Gwi;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.733-739
    • /
    • 2014
  • To develop an effective use for poor-quality individually quick-frozen (IQF) oysters Crassostrea gigas stored for a long period, the extract conditions, quality characteristics, and optimum reaction flavoring (RF) conditions of a complex extract from these IQF oysters were investigated. The moisture, pH, and volatile basic nitrogen contents of IQF oysters stored for 18 months (18M-IQFO) were 77.9%, 6.32, and 17.9 mg/100 g, respectively. Three different kinds of extract were prepared from 18M-IQFO: a hot-water extract (HE), scrap enzymatic hydrolysate (EH), and complex extract (CE). The respective extracts contained 5.5, 8.6, and 6.6% crude protein and 281.7, 366.0, and 343.0 mg/100 g amino nitrogen, and had 811, 359, and 1,170 mL/kg extraction yields. The CE was superior to the traditional HE in terms of the extraction yield, amino-nitrogen content, and organoleptic qualities, except for the odor. To improve flavor via the Maillard reaction, the reaction system used to produce a desirable flavor comprised CE (Brix $30^{\circ}$), 0.4 M glucose, 0.4 M glycine, and 0.4 M cysteine solution (4:2:1:1, v/v). The reaction time and pH were the independent variables, and the sensory scores for baked potato odor, masking shellfish odor, and boiled meat odor were the dependent variables. The surface response methodology (RSM) analysis of the multiple responses optimization gave a reaction time of 120.6 minutes and pH 7.33 at $120^{\circ}C$. The reaction improved the flavor of CE considerably, as compared to that of the unreacted extract.

Optimization of the Bone-softening and Fishy Odor-reducing Processing of Mackerel Scomber japonicus Products using Response Surface Methodology (표면반응분석법을 활용한 뼈 연화 및 비린내 저감화 고등어(Scomber japonicus) 가공품의 가공공정 최적화)

  • Park, Sun Young;Kim, Yong Jung;Kang, Sang In;Lee, Jung Suck;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.499-509
    • /
    • 2018
  • This study optimized the bone-softening and fishy odor-reducing process for mackerel Scomber japonicus products using response surface methodology (RSM). The RSM showed that the optimum concentrations of doenjang and citric acid for reducing the fishy odor in bone-softened mackerel were 11.8% and 0.04%, respectively, and the optimum immersion time was 52.2 min. The estimated overall acceptance, salinity, and acidity of the products under these optimum conditions were 7.7 points, 1.1%, and 202.6 mg/100 g, respectively, which were similar to the actual measured values of $7.6{\pm}1.2$ points, $1.0{\pm}0.1%$ and $203.2{\pm}3.8mg/100g$. Moreover, the heating temperature and time for bone-softening based on RSM were $107.3^{\circ}C$ and 4.4 h, respectively. The estimated hardness and proportion of skin removed from the product under the optimal conditions were $161.5g/cm^2$ and 0.09%, respectively, which were also similar to the actual measured values of $171.1{\pm}12.6g/cm^2$ and $0.10{\pm}0.02%$. The optimum bone-softening and fishy odor-reducing process for mackerel consisted of the following steps: thawing (${\leq}10^{\circ}C$, 8 h), filleting, washing/dewatering, immersing in an 11.8% doenjang -0.04% citric acid solution for 52 min, washing/dewatering, heating ($107.3^{\circ}C$, 4.4 h), freezing, depanning, internal and external packaging, and X-ray detection treatment.

Optimization of 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol Produced via Lipase-catalyzed Esterification Using the Response Surface Methodology (Camellia Oil로부터 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol을 함유한 효소적 합성반응물의 최적화 연구)

  • Hwang, Yun-Ik;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Taek;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.721-728
    • /
    • 2011
  • 1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl-(POS)-glycerol-enriched reaction products were synthesized from camellia oil, palmitic ethyl ester, and stearic ethyl ester via lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the production of the POS-enriched reaction product (Y1, %) and the stearicand palmitic-acid contents at the sn-2 position due to acyl migration (Y2, %). The reaction factors were the enzyme amount (X1, 2-6%), reaction time (X2, 60-360 min), and substrate molar ratio of camellia oil to palmitic ethyl ester and stearic ethyl ester (X3, 1-3 mol). The predictive models for Y1 and Y2 were adequate and reproducible as no lack of fit was signified (0.128 and 0.237) and as there were satisfactory levels of R2 (0.968 and 0.990, respectively). The optimal conditions for the reaction product for maximizing Y1 while minimizing Y2 were predicted at the reaction combination of 5.86% enzyme amount, 60 min reaction time, and 1:3 substrate molar ratio (3 moles of palmitic ethyl ester and 3 moles of stearic ethyl ester). Actual reaction was performed under the same conditions as above, and the resulting product contained 20.19% TAG-P/O/S and 12.71% saturated fatty acids at the sn-2 position.

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

Optimization of Vacuum Drying Conditions for a Steamed (Pumpkin-) Sweet Potato Slab by Response Surface Methodology (반응표면분석법을 이용한 증절간 (호박)고구마의 최적 진공건조조건 설정)

  • Shin, Mi-Young;Youn, Kwang-Sup;Lee, Su-Won;Moon, Hye-Kyung;Lee, Won-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1314-1320
    • /
    • 2011
  • Vacuum drying was conducted for a steamed pumpkin-sweet potato slab to improve its quality, convenience and preference as snack. Steamed sweet potato was dried from 30 to $60^{\circ}C$ for 12 hr, after which moisture contents, colors, and taste were evaluated. The lowest moisture content was 0.22% upon vacuum drying at $60^{\circ}C$ for 12 hr. Lightness decreased while other color values (a, b and ${\Delta}E$) increased with increasing drying temperature and drying time. Reducing sugar and soluble solid contents ranged from 98.7~268.11 mg/g and $19{\sim}72^{\circ}Brix$, respectively. Sensory score of the sample was the highest when dried at $50^{\circ}C$ for 6 hr. The optimum drying conditions were predicted to be $48.5{\sim}62^{\circ}C$ and 5.1~7.1 hr by response surface methodology.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Optimization of Curcumin Extraction and Removal of Bitter Substance from Curcuma longa L. (울금의 가공적성 증진을 위한 Curcumin 추출 최적화 및 쓴맛 성분 완화)

  • Kang, Seong-Koo;Hyun, Kyu-Hwan
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 2007
  • Extracting and analytical conditions of curcumin, and removal of bitterness substance from Curcuma longa L. were investigated. Absorption maxima was shown to be 424 nm at methanol solvent. Optimal conditions for analysis of curcumin was Zorbax eclipse $C_{18}$ column ; mobile phase, 75% MeOH ; flow rate, 0.8 mL/min ; wave length, UV 424 nm. Curcumin component was analyzed to be the highest content in methanol extract. In all samples, extraction yield by heating was shown to be effective as compared to room temperature. Curcumin contents of methanol and ethanol extracts in extraction of room temperature were 14.4 and 14.2 times higher than that of water extract, respectively. Two hot solvent extracts has a high curcumin content being 150 mg% as compared to room temperature. Extracting time was an effective condition when it was extracted for 60 minutes for elevating the curcumin content of water and methanol extracts. Bitter substance (BS) was markedly decreased in water extract by heat treatment of above $80^{\circ}C$. BS was weak in $121^{\circ}C$ treatment than in room temperature and it was however strong in $100^{\circ}C$ treatment. RT and $70^{\circ}C$ heat treatment were not different in BS intensity.

Monitoring of the Optimum Conditions for the Fermentation of Onion Wine (양파주의 최적 발효조건 모니터링)

  • Choi, In-Hag;Jo, Deokjo;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2013
  • Central composite design along with response surface methodology (RSM) was applied to improve the fermentation process in onion (Allium cepa) wine production. The effects of different fermentation parameters (time, temperature, and initial sugar content) were found to be significant with respect to the physicochemical and sensory properties of wine. The maximum score for the alcoholic content was obtained at $29.27^{\circ}C$ fermentation temperature, 103.43 h fermentation time, and $27.52^{\circ}Brix$ initial sugar content. The maximum score for overall palatability was obtained at $39.27^{\circ}C$ fermentation temperature, 57.28 h fermentation time, and $22.14^{\circ}Brix$ initial sugar content. The coefficients of determination ($R^2$) were 0.9620 and 0.9060 for alcoholic content and overall palatability, respectively. The ranges of the optimum fermentation conditions ($28{\sim}32^{\circ}C$, 80~90 hr, and $20{\sim}25^{\circ}Brix$) were obtained by superimposing the response surfaces with regard to the alcoholic content and overall palatability of onion wine.

Optimization of blue berry extraction for beverage production using enzyme treatment (효소처리에 의한 블루베리 음료 생산을 위한 최적추출조건)

  • Ji, Yu-Jeong;Im, Moo-Hyeog
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we tried to establish the best method for fresh blueberry beverage production using enzyme treatment as well as low temperature extraction. During extraction of physiologically functional materials, we used low temperature to prevent nutritional loss by heat. In addition, we investigated optimal blueberry extraction conditions using various enzyme treatments (cellulase, pectinase, cellulase:pectinase (1:1) mixture) to increase extraction efficiency and reduce turbidity. A variety and ratio of enzymes, extraction temperature, extraction time, and shaking speed were considered for the best extraction efficiency rate. We observed high extraction efficiency rates of 85.72-86.55% and 87.06-87.93%, respectively, upon cellulase or pectinase treatment. In addition, a mixture of cellulase:pectinase (1:1) showed an extraction efficiency rate of 86.84-88.14%. The best extraction efficiency rate was observed when crude blueberry was treated at $45^{\circ}C$ (87.91%), for 3 h (87.88%), in a 90 rpm shaker (89.19%). Sugar content and acidity of blueberry extract were not affected by the various treatments. However, total phenolic compounds were detected upon pectinase treatment (18.62 mg/g). Only fructose and glucose as free sugars were found in all samples regardless of treatments and extraction conditions.