DOI QR코드

DOI QR Code

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge

원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성

  • Han, Kyoung-Rim (Department of Environmental Engineering, Dong-A University) ;
  • Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
  • 한경림 (동아대학교 환경공학과) ;
  • 안영희 (동아대학교 환경공학과)
  • Received : 2013.04.01
  • Accepted : 2013.05.20
  • Published : 2013.05.30

Abstract

Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

퍼클로레이트(${ClO_4}^-$)는 지표수 및 토양/지하수에서 검출되는 신규 오염물이다. 퍼클로레이트 환원세균(PRB)은 ${ClO_4}^-$를 무해한 최종산물로 전환시킬 수 있으므로 ${ClO_4}^-$ 제거는 미생물을 이용한 방법이 가장 적절한 것으로 알려졌다. 이전 연구[3]를 통해 원소 황 입자와 활성슬러지를 이용하여 독립영양방식의 ${ClO_4}^-$ 제거가 가능하다는 실험적 증거가 제시되었다. 입자상 황은 비교적 값이 저렴하고, 활성슬러지는 하수처리장으로부터 쉽게 구할 수 있는 장점이 있다. 그래서 본 연구에서는 원소 황을 전자공여체로 사용하였을 때 여러 환경요인이 활성슬러지 미생물의 ${ClO_4}^-$ 분해에 미치는 영향을 회분반응으로 조사하였다. 이 회분반응의 결과를 통해 활성슬러지 미생물에 의한 독립영양방식의 ${ClO_4}^-$ 분해를 위한 최적조건을 도출하였다. 또한 활성슬러지로부터 농화배양된 황산화 PRB는 활성슬러지보다 ${ClO_4}^-$ 제거능이 우수한 것으로 회분반응 결과 나타났다. 그래서 본 연구결과는 최적조건 적용 및 농화배양된 접종균을 통해 원소 황과 활성슬러지를 이용한 독립영양방식의 ${ClO_4}^-$ 제거를 향상할 수 있다는 것을 나타내었다.

Keywords

References

  1. APHA. 1995. Standard methods for examination of water and wastewater. 19th eds. American Public Health Association, Washington, D. C., USA.
  2. Coates, J. D. and Achenbach, L. A. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat Rev Microbiol 2, 569-580. https://doi.org/10.1038/nrmicro926
  3. Han, K. -R., Kang, T.-H., Kang, H.-C., Kim, K., Seo, D. -H. and Ahn, Y. 2011. Autotrophic perchlorate-removal using elemental sulfur granules and activated sludge: batch test. J Life Sci 21, 1473-1480. https://doi.org/10.5352/JLS.2011.21.10.1473
  4. Interstate Technology Regulatory Council (ITRC). 2005. Perchlorate: Overview of issues, status, and remedial options. http://www.itrcweb.org/Documents/PERC-1.pdf
  5. Ju, X., Sierra-Alvareza, R., Field, J. A., Byrnes, D. J., Bentley, H. and Bentley, R. 2008. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere 71, 114-122. https://doi.org/10.1016/j.chemosphere.2007.09.045
  6. Kim, H., Kim, J. and Lee, Y. 2007. Occurrence of perchlorate in drinking water in Korea. J Korean Soc Water Quality 23, 822-828.
  7. Kim, H., Kim, J., Lee, Y., Lee, J. and Kim, S. 2008. Perchlorate in advanced drinking water treatment process. J Korean Soc Water Quality 24, 164-168.
  8. Lee, C. 2009. Optimum treatment of sewage and wastewater discharged in Gumi industrial complex. Final report 09-2-10-16-5. Gyeongbuk regional environment technology development center. Gyeongbuk, Korea.
  9. Lee, K., Kim, S., Lee, K. and Kwon, O. 2010. Biological treatment of perchlorate in inorganic wastewater from primary zinc smelting industry. Proceedings of Kor. Soc. on Water Quality April 16. Taejon, Korea. 103-104.
  10. Logan, B. E. 1998. A review of chlorate-and perchlorate- respiring microorganisms. Bioremediation J 2, 69-79. https://doi.org/10.1080/10889869891214222
  11. Miller, J. P. and Logan, B. E. 2000. Sustained perchlorate degradation in an autographic, gas-phase, packed-bed bioreactor. Environ Sci Technol 34, 3018-3022. https://doi.org/10.1021/es991155d
  12. Min, B., Evans, P. J., Chiu, A. K. and Logan, B. E. 2004. Perchlorate removal in sand and plastic media bioreactors. Water Res 38, 47-60. https://doi.org/10.1016/j.watres.2003.09.019
  13. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ Forensics 2, 301-311. https://doi.org/10.1006/enfo.2001.0059
  14. National Research Council. 2005. Health implications of perchlorate ingestion. National Academy of Sciences. Washington, D. C., USA.
  15. Republic of Korea Ministry of Environment. 2007. Notice on amendment of law relating to conservation of water quality and water ecosystem. Notice No. 2007-419.
  16. Republic of Korea Ministry of Environment. 2010. Guideline for the management of drinking water quality monitoring items.
  17. Shin, K. -H., Son, A., Cha, D. K. and Kim, K.-W. 2007. Review on risks of perchlorate and treatment technologies. J Korean Soc Environ Eng 29, 1060-1068.
  18. Snaider, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63, 2884-396.
  19. US EPA. 1999. EPA METHOD 314.0: Determination of perchlorate in drinking water using ion chromatography.
  20. Wu, D., He, P., Xu, X., Zhou, M., Zhang, Z. and Houda, Z. 2008. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water. J Hazard Mater 150, 419-423. https://doi.org/10.1016/j.jhazmat.2007.04.124

Cited by

  1. Perchlorate Removal by River Microorganisms in Industrial Complexes vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.92
  2. Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community vol.26, pp.1, 2016, https://doi.org/10.5352/JLS.2016.26.1.68